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Predicting estimated glomerular Itration rate (eGFR)
for chronic kidney disease risk assessment using machine
learning techniques: A case study of Khu Mueang Hospital

Wannaporn Jaimeetham

Khu Mueang Hospital, Burirum

Abstract

Chronic Kidney Disease (CKD) is a significant health
problem affecting populations worldwide. Analyzing and
predicting the estimated glomerular filtration rate (eGFR)
is essential for planning patient care at various stages,
including primary prevention, secondary prevention, and
tertiary prevention. In this study, we experimented with
various machine learning models, including Linear
Regression, Random Forest, Decision Tree, Gradient
Boosting Machine (GBM), XGBoost, and LightGBM, to
identify the factors influencing eGFR. We selected the
most effective model based on performance metrics
such as Mean Absolute Error (MAE), Mean Squared
Error (MSE), and Ral.The results demonstrated that the
most effective model was Random Forest, with an MAE
of 0.146688, an MSE of 0.260079, and an R? of
0.999688, indicating the highest accuracy across all

metrics. The R@l value, being close to 1, reflects the

model's ability to explain the variability in the data
effectively. Furthermore, the Random Forest model was
refined using Grid Search, resulting in optimal parameters.
This model proved to be highly effective in predicting eGFR
for patisnts with chronic kidney disease (CKD) with a low
MSE and a high Rel score, showcasing its capability for
accurate outcome predictions. It can be utilized to assess
the risk of CKD effectively, aiding in the planning and

prevention of chronic kidney disease more efficiently.

Keywords: Chronic Kidney Disease (CKD), Primary
Prevention, Secondary Prevention, Tertiary Prevention,
Machine Learning, Risk Factor Prediction, Model

Performance

Received: 10 June 2025, Revised: 25 July 2025,
Accepted: 1 September 2025

Correspondence: Wannaporn Jaimeetham Khu Mueang Hospital, 101, Khu Mueang, Khu Mueang District, Buri Ram
31190, Thailand, Tel.: 044 699 238, email: wjting.954@gmail.com

Journal of the Thai Medical Informatics Association, 2, 110-118, 2025



Jaimeetham, Predicting estimated glomerular filtration rate

misiysauinaudunuds:answavovauiBou=nuuiaaihrasaidaad
d@nsumssnuima:tiaisoluns:znalidoa: nsaifinvnlsowanuraniiion

assmuws Toiisssu

=) P L3
I‘N‘W FINAQLNDY 1IN

unAado

Tselaidess (ckD) n‘juﬁr;yngmmwﬁﬁﬁﬁzyeﬁaﬁmam:m
fedszmnsilan msesziiasiimemnsnsssmedle
(eGFR) uAsanulumanunumsquariheluszezeng
ﬁgom'iﬂmﬁ'uizﬁuﬂjugﬁ (Primary Prevention) sauvfsni
(Secondary Prevention) uazseaun@ani (Tertiary Prevention)
lumsenmni Lsﬂﬁmmaﬂ“ﬁumeiﬁﬁuiﬂmm@lm (Machine
Learning) Mannvangdszian lun Linear Regression, Random
Forest, Decision Tree, Gradient Boosting Machine (GBM),
XGBoost Uz LightGBM LiteAumiaseiiinases eGFR
ImjLﬁarﬂuLmaﬁﬁﬂizaﬂ%mwgoqﬂmﬂmii’mﬂizﬁm%mwmm
lumasmean Mean Absolute Error (MAE), Mean Squared
Error (MSE) W&y Rl NANISNAanIkaniliiuinluina
ﬁﬁﬂizﬁw%quoqmﬁa Random Forest lagi A1 MAE winiu
0.146688, MSE iy 0.260079 waz Ral Wiy 0.999688
Souansliiiudsanausiuingefigalunniuving laga R?
Tnades 1 uamsteAnuaiusnluniseduneanuulsysiu

Tudoyaldd wonanil luiAa Random Forest §3l@su
nMaUiudgemenisld Grid Search Fodanalilamiines
‘*7';mmmuﬁqmmm%ﬂmLﬂaﬁﬁﬂizﬁw%mwgﬂumsﬂﬁmﬂ
A eGFR z%m%’uéﬂqﬂiiﬂvl,mlgﬁa (CKD) $hen MSE fign
WAz Rl Score ‘ﬁqa WAAIDIANNEINITDIUNNTAINNNTL
naansldosausiuin FeamnsotinlldlumsUssfiuemaudes
saslsalaiFessldecnsiiussansnm e lUNTIEUNMIYUS
wasilosmilsaladoseenaiuss ananmeein.

manny: snlasess, nstlesiussavdsugd, nstlesriu
seAUNAgnd, matesnussAuafsnd, MaseuIYeNATs,
msvweilaseasy, Ussansnmluna

JunsueuaUl: 10 dguiew 2568, Tuiuily: 25 ningiau
2568, Tunneusy: 1 nugeu 2568

unun

1salni303s (Chronic Kidney Disease, CKD) wutleym
qmmwﬁﬁwﬁzyﬁﬂan asAmsewiolan (WHO) sz
CKD Lﬂuuﬁﬂummwﬁﬂﬂaamfu?w%%mu,a:mmﬂms
wlan Immawwﬂuﬂ@:wsmniﬁﬁﬂaﬁ'mﬁ'm vy gihe
wwmuskazanNaulaings lusenuzes WHO (e
nsdanisuaznisguagiaslsalaluaniunisalgniduy
Tauwiutemnudnduresnisiihsedonazdszsifiunismneu
ypilalneldAnisnsesasla (eGFR) Lﬁmwal,l,mum‘m_]l,l,a
wazilasiunisenifiusedsealadess 2

dwsuusznalne anumsallseladessfinady
ﬁr;ym‘*?iw%'ﬂmugumamn%bu TayaNNINAILANLIA
NITNTNABITUGY 53y Nwangihe CKD ludszmealng

FRnwusuUszauau: 5smuns laflsssn lsswenuiagiiies
101wy 6 fuagiies dunegies 9riny3sug 31190,
ns.: 044 699 238, email: wijting.954@gmail.com

Wnduetnasaiiles lnsfienudenlssiumnnssugunn
uazfadeides 1y Wi eudulafings uazlsadn
Fafuteiadvsdndglumsinlsaladess 1
Nndoyaradlsaneuiagiies wuuugihelsn
lalu Stage 1 uaz Stage 2 Ruwdldiuinsividoiudu
Wdinties Tuansidmnudinely Stage 3wl
Jusgnssioiilas a1n 942 aulull 2562 1iu 1417 au
1wl 2566 wenanil gihelu Stage 4 uaz Stage 5
fnuinfiunlduRududuiu. Ssazvioufisanuvitnie
fszummsngadonsdglunisguarihelsalaizess
nslnssiiladoiidinanion eGFR 1udednfty
Tumsnsunuguanazilesiulsala weflan1sFausves
\A383 (Machine Learning) gninunldidieaianisnl
uaztszifinauidssnaslsalaidess (CKD) Tasiiiy
Yszansnmlunisrunumsguagihe laenisdseiiiv
eGFR umdTndndylunsinnisisala msldinaiiail
aansaszyiaiedesiifinasde eGFR uazmUILKUNS

Journal of the Thai Medical Informatics Association, 2, 110-118, 2025

m



12

Jaimeetham, Predicting estimated glomerular filtration rate

'ﬂaaﬁ’uﬁmmmuém%;jﬂaﬂul,l,m'a:s:ﬂzvlﬁaﬂ'wﬁ
Yse@NTNIN

Jagus:avAlumsioa

mﬁ%ﬂﬁﬁi@]qﬂﬁzmﬁlﬁaﬁmmLLazﬂszLﬁuﬂizaw%mw
maﬂumanﬁﬁ'auimmm?aa (Machine Learning) #ignsnsn
mamsainnudsedsalaiess (CKD) Inensyseiiu
A1N1Insesvadla  (eGFR) Tugﬂw%a%‘*ﬁwiﬁmmsm
filumsilesiuuazianislaessiiussansamuniy
T@ﬂﬁfmqﬁi:mﬁuﬁﬂﬁaﬁ:

1) msUsziduanudes: Welssfudaiefiiinade
nstiia kD Tuszezen lngRansanainiasefineidos
Augea 1wu 01g e dseidnisidulsaumviu uaz
Auaulain

2) miswawluiaa: iewaunlunanisi3euiues
Lﬂ%mﬁlﬁﬁi:ﬁw%quﬂumsmmm‘miﬂ'ﬂ eGFR lagn1s
14imeifiafivainyane 1y Linear Regression, Random
Forest, Gradient Boosting tae XGBoost

3) mswieuieudssansam: tiewIsuifisy
Uszandnwaedluinanis 9 lagldunsndiiu Mean
Absolute Error (MAE), Mean Squared Error (MSE) W]
R? ieszylumaiifianuusiuingege

4) msaduayunistesdiu: Lﬁ@iﬁﬁmﬂmm:m?mﬁa
ﬁ%wL‘ijuu,n'gﬁﬁu%miﬁmqmmwiumﬁxgqﬂﬂaﬁ'ﬁﬂmu
\#eode CKD wazdniiunisilesnuldesneiuried

nunauJIsSsSUNSsy

mMsnumMssUnssuieiuiadefidimaselsaladess
wazn1sld Machine Learning

1) UodaiidowacolsalaiSoso

Tselai3ass (Chronic Kidney Disease, CKD) tuilaymn
qmm‘wﬁiﬁwﬁtyﬁiﬁ%ummauhmﬂﬂﬂ%%ml,angl,%mmty
FIUFINN Lﬁaamnmwans:wuﬁa@mmw%ﬁmmgﬂm
LLazﬁﬁmﬁnwaﬁmﬁgﬁuium:mmmmﬂaq'u lun1s
Anwil Q‘ié”m,jaLﬁﬂﬂﬁﬁﬁ’ﬂﬁﬁaw%wa(ﬁiam‘sl,ﬁ@ CKD
LLaznﬁ{Lﬂ?mifmuimaqmf‘a"aa (Machine Learning: ML)
Wehnmeansdssiineidesiulsa

o

CKD lasudnswannuaieiladsnaian lown Tsadqs

@

u anuauladageuazlsauivnig auduifadenan

(121 i

AnedaInunisiin CKD 1ae Pontes et al.
gthendanuaulafingenldlasunsmuguilannuasg
Aazwamudu CKD wazAnmtdseiiuuilduimnanly

naNYARATITIAANNIUATNIsANELNIAUlsA wana g

o

gadinswuianugnaestsaumulugiae CKD Jane
g909 40% Tuun9dszaIng BouanafenNaNNUsS
WDILNTITENINLTALLIMINULAS CKD

(1]

n1sAnelag Napitupulu et al. Laz Pontes et

al. 2]

Flfiduiniasomemginssy wu msgqu%
nsuslnaueanesed waznisuilanemisiliauga
FAnuduRusAUNISIin CKD woAnssuyszaniuuay
nmaidenItiianlduanzaniefinanssnuaeanuio
Ainduaes CKD mliiAnauandulunisysuyge
woRAnssuietlasiulse quLaszmﬂuﬁa%ﬂéwﬁmﬁﬁ
4] a2 Mbah

FEIUIGFIDLUAZINATIB LA TG I6D

8ndwasanisiin CKD lae Xie & Sheng
et al. (2]
n1sLAa CKD uﬂﬂniwnéuﬂizmwnsgu 4l

nsnAILANlIA LR ANBLATN AW AT ULLA LA B
Tsalalu 10 T410min (Thai CKD Risk Score) @eiinns
Yszifiurulamafiuandeiu lnslunausniiuliidase
D9 U 218 1WA 39ULe7 Uszddnisthelaain
W wazszauanuduladin Tusmneilunanasssiuds
Armsnsesaadla (eGFR) elwldnisussiiuanudss
Ausiudngegy 00

2) msl3 Machine Learning munaanwidaoms
inafsalaiSaso

ﬂ']iL%?;lui?l’BﬂLﬂ%@ﬂ (Machine Learning: ML) ‘lasu
miﬁ@u%"uiﬁLﬁum?mﬁ@ﬁﬁﬁﬂﬂmwgﬂumsﬁmm
uadnsaed CKD lasanizlunisussifiumnudesues
nsnaluglsalaneszezgaving (End-Stage Kidney
Disease: ESKD) %#an8n15AN®15189U 09U AN 108
39ane3du ML lun1939age CKD wazmuuaiudnlunis
MUNLBINTT

(10]

Bai et al. WUIMBANBIDN ML W Logistic

Regression ae Random Forest danuhilunisiiune

ESKD TnaLAsany Kidney Failure Risk Equation (KFRE)

(5]

Afould uananil Mahbub et al. ' §351897114791 Tree-

Based Classifiers 31A211uiu1g909 100% lun1s3tiade
CKD uansdefnanmaasnaluladilunislinadnsd
LHUHILAZTIALT

nsszyaesnadylunisiiue ckD Aflunum

@y 1ae Mahbub et al, ©°]

. o o D 8
wiluddnednniidndy Tuaned Ford et al, &

 a - .
wudlulnaduuazsays

LARIFLRUINAIVITNITINTNUNITRAFINIT DTSN
annuiuilunsUssfiuanuazesle
= PR Ao a a
At ML aziidnanwgslunisysziivangdss
wazn1sandulaniInain wansInINAINYamIelunig

Journal of the Thai Medical Informatics Association, 2, 110-118, 2025



Jaimeetham, Predicting estimated glomerular filtration rate

y the dataframe

(?Ii’l"%ﬁﬂ‘i.]ﬂ’)’]llgﬂé]’@\'i"llﬂﬂIZJL@ﬂLL@&ﬂ’]iUﬁim’]ﬂ’ﬁi@ﬁd@V}’N

AR NNUaINUasNaLn N A NLHLETuA1TRUY Anu

) bpd bps  bmi waist diabetes hypertension heart copd .. alb  hbalc urine_albumin hdl chol smoking alcohol cke
! ! Y 2 S < v 0 0 7775254 0482908 52.393822 181067852 No Mo
Tudesgwhndninemansdeyauazunnddi@oamng o n o o e e
= @ A o & o o @ ava 1 00 140 0 B0 Ne No N N _ BSOTI LTSNA QA8 523032 10106782 Ne  Yes
QQLﬂua\jqr] Lﬂuaqwiuﬂ’]swmu’] ML Iqu\jﬁaumaﬂqﬂ 760 1210 21565 750 Yes Yes No No 3700000 7775254 0482908 52.393822 181067652 No No &
~ a a 00 1240 ST B0 Mo No Mo Mo . 33000 LTSS 0ODKOD 52392 1B1GTES. Mo Mo
HUTZANDNIN.
= a 1 L a
EU‘VI 2 LANANTDHAINVIANNEY

d5msfinn

study design, settings, and data source c) 77'75“7_/@\7778%/ﬂ (Data Transformation) L”Jﬂ\?ﬂ’”l

o oo @ . 2 & .
1) mssousaudoya (Data collection) ADANNNLLYE Object Iviifu Numberlic

iavlasiusnaIngiuieyanisseuy HIS laaidau o .
Y * Y sex agey bpd bps bmi waist diabetes hypertension heart

Query SQL Audayasned1u 5eninaiun 1 gainu 2563

- P . ) 0 28 950 161.0 34627 800 0 0 0
- 30 fswiAn 2567 Visuun 58,724 318n1s doyadiy ©u 50 1010 2005 760 . 0 o
yapanaixsaszydmnu  luildduduniaesgadoya o 55 800 1540 19441 620 5 o o
Foyadrduaziigndesiunisinnetaionsiialsala o 75 760 1210 21565 750 ; o
NoiFess ldun e o1y (01g 18 TAulY) Aenn 4

v 3o e a0 wa JUN3 ulasAdeya
suladin BMI souien Uszianisdlsasan laun wiwanu

ANNAUlafngs lsavnla Yanaanuisess walauazviasn . e o . 4 g e o
. A d) @sFeuTeyanasinITuastoyainelnyuler
Ao Wansan1aestfURnislann A1 eGFR, HbAIC, . .

o Joyaldla
Urine_albumin,HDL ,Cholesterol 13z36n190:g31

dabates ypertansion heant wpd

Us23AN15gUYMS ALtk CKD risk scores, CKD stage
2) 10Savdoya (Data Cleansing/Data : T T O N T
Preprocessing) o - - i | ==

a) N1IATIIEOUTBYANYIANIY (Missing Data b e e

Handling) - - - - -
A T P Ba ® T ° " atng ™ b B ® © T o mge
.:—“u"ﬁ o R B P o ey 'WM Far - s | 1 I La
Missing Values n Each Column UM 4 asrameudayanduladn

50000

e) maaaauﬁayammﬁ'yw"uﬁlmﬁtﬂi'):ﬁn')insm’lﬂ

40000

#a78998ya (Correlation Matrix) aduLastoga nsI9aay

30000

o o & i o = & o i
AIMNANUNUSVDIAT eGFR LLZ\?Z&??LLU?E)H“} LWBANIINB Y
197 Model

Number of Missing Values

20000

10000

f) relationship between eGFR and chronic conditions

P P F } & 3 ° 2 'R .
I I E ¥ ; ¥ - E,.,v .
a a
E'UVI 1 mwaawm&awmww “1 — % =
o A o

ST Bistribuion by COPD Disease

b)ianistaganyamelagifiuaiMean luaoansv
Wudnay o
“| % "

JUN 5 Anudnnusresnlauazlsnizesiau

Journal of the Thai Medical Informatics Association, 2, 110-118, 2025 113



H

g

00

Jaimeetham, Predicting estimated glomerular filtration rate

g) relationship between eGFR and CKD Risk score
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