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Evaluating a machine learning models for predicting full
recovery in stroke: A case study at Hatyai Hospital
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Abstract

Stroke is a leading cause of death and disability
worldwide, making the prediction of patient recovery
crucial for treatment planning and rehabilitation. This study
investigates the application of Machine Learning (ML)
techniques to predict stroke patient recovery, using data
from 6,081 cases at Hatyai Hospital. In the design and
execution of the experiment, four ML models were utilized:
Logistic Regression, Decision Tree, Random Forest, and
Gradient Boosting. The data preparation process involved
label encoding, handling missing values, and balancing
the dataset. Model performance was evaluated using
K-Fold Cross-Validation and Hyperparameter Tuning. Results
show that Random Forest performed the best, achieving

an accuracy of 88.61%, with both Precision and Recall

at 0.91, and an F1-Score of 0.91. Gradient Boosting
followed closely with an accuracy of 88.50%. Logistic
Regression and Decision Tree showed lower performance,
with accuracies of 87.08% and 83.83%, respectively.
The study demonstrates that ML techniques, particularly
Random Forest and Gradient Boosting, offer high
accuracy in predicting stroke recovery, providing valuable

insights for efficient treatment planning.
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lana Random Forest fitlszAnsnwdianslunis
wensainsfludngsanysaivnsgiaslsanasniion
auad (Yes) wazmswsnsaimsiusmegndlaianysoives
yihelspvasaidenanad (No) lawiian Precision, Recall
waz F1-Score g/lugad 0.90 §i9 0.91 uazil A1 Accuracy
voslanagefis 91% Lilsanang 4 vosaana No uas
Yes Inaifsany wansliidiuinlumaaiuisnsnnisny
%asﬂaﬁﬁmmvl,aiau@avlﬁa WA UIUFIBEN9l  Support
fnenafinanmsutisdeyasenifugaidn 4 deldluns
nAFoU, 39 Resampling 3ansnsosdayaitlsianysal
Fodusunguaninlideyaiignnaseuiiiuiuanas
M3 2

A13197 2 Confusion Matrix U89 Random Forest

Class Precision | Recall | F1-Score | Support
No 0.91 0.91 0.91 147
Yes 0.90 0.90 0.90 129
accuracy 0.91 276
macro avg 0.91 0.91 0.91 276
weighted avg 0.91 0.91 0.91 276

1.3 mMsw3suisuluwma (Model Comparison)
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Su ) ﬁuamﬁﬁtﬁu'jﬂuma Random Forest e Gradient
Boosting #iUsz@nsnmlunisianisteyanfinnududen
wazliiaugalafini TulAadu 9 1 Logistic Regression
W&z Decision Tree e iuiwuluemuissuns (Wang
et al., 2020) ﬁtmm’i’] Random Forest #AN&IN19D
geamsninenan s ldogsutuinlungugiie

aualug o) 13

= d‘,ﬂ/ di’ v @ = £ = k3
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vesgthelinvasnidenanadlunaueananlsaneuia
Fsenaaanndesiuedunslumuddeues (Ungkawa & Rafi,
2024) ﬁi:qdwmwuiﬁam@amaﬁaga‘iui:ﬁumo 7 919
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donanolszanininassluina
ilessnaninuau feature snn wnlilumaneansainig
s lalaireausiui WAZAINMIRNTUNUTIAUAN AL
ﬁa:mswmnmﬁmiﬁuﬁmﬂ'ﬁmmginhaaQﬂmliﬂmam

LADARNDY ﬁuagjrﬁ”‘uQmzﬁ’ﬂwmxmamim:L:ﬁummaﬁn

1w Barthel index A%ifi 1, NIHSS A%afi 1, mRS adefi 1,
BS, LDL, 818, GCS score \Tusiu AMuEIATYI0INAGHS
*7ivlﬁ%u1umu3$ﬂf:a%i'*?imiﬂgaﬁﬁﬂuLc»m Machine Learning
armrsaldlunisneinsainadnsvesgvaslsnvaen
LA DARNBILAZIILNLNTS NI WS eUS LI AW AnT TN
Punzasls

nsnegevLaziUTsusulunanasgULULTIB UGy
7 Random Forest L‘ﬂuéﬁﬁan‘*?'immzauﬁthmﬂ%&mﬁa
N1sAs2988y  Overfitting/Underfitting L& U&AQyp0d
nswanluiea Machine Learning tivelwusilainluna
ﬁﬁwuﬂajﬁ'auﬁaaammﬁuiﬁ (Overfitting) M3Bl58U3
Weeiuly (Underfitting) msma%aufjgﬂé%ﬁumﬂm
nswSsuisunanisnueeslunauugadeyalineysy
WaTTATRYANAERY LazNan1Tnadeuluiaa Random
Forest ﬁgﬂﬂ%’mlﬁh (Tuned Random Forest) Uu"gﬂ“ﬁaaa
nagouuandliiuIlunainuLiudn (Accuracy) 09
88.61% @91s33laiaaaunsanensoinsiuiaegn
auysnivesgihelsanannidonanaslaotiausiuinlunsdl
aulugy

dsuwamsfinu
MNNSANENLUTBUIRBULULANABINITWEINTDINTS
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Tree lag Random Forest waz Gradient Boosting T¥anu
wdudn (Accuracy) §4fl9 88.61%, 88.50% MANNAGU
Imwamiﬁnmﬁwudﬁmiwmninimiﬁuﬁmaaéﬂmkﬂ
nannlaanaNDdA28lNlAa Random Forest fuagjﬁu
AMANEULNIARTENE1ATY dun Barthel index s 1,
NIHSS A3l 1, mRS A397l 1, BS, LDL, 918, GCS score
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