

การศึกษาและเปรียบเทียบผลการฝึกการออกตัว 3 รูปแบบที่มีต่อความเร็ว และการเร่งความเร็วระยะทาง 30 เมตร ของนักกีฬาระดับมหาวิทยาลัย*

ปรีชา ธนา สนธยา สีละมาด*

ภาควิชาจิตวิทยาศาสตร์การกีฬา คณะผลิตศึกษา มหาวิทยาลัยศรีนครินทรวิโรฒ

*Corresponding author

E-mail address: Preecha.thani@g.swu.ac.th

รับบทความ: 7 มิถุนายน 2566

แก้ไขบทความ: 21 สิงหาคม 2566

ตอบรับบทความ: 22 ธันวาคม 2566

บทคัดย่อ

การวิจัยนี้ทำการศึกษาและเปรียบเทียบความเร็ว การเร่งความเร็ว ความยาวก้าว และจำนวนก้าว ในการออกตัว 3 รูปแบบที่มีต่อความเร็ว การเร่งความเร็ว ความยาวก้าว และจำนวนก้าว ของนักกีฬาระดับมหาวิทยาลัย ที่มีความเร็วที่ระยะทาง 5, 10, 30 เมตร แต่ละรูปแบบ ที่มีนักกีฬา 16 คน ใช้แบบสุ่ม (cross-over design) เข้ากับกลุ่มทดลองการออกตัวแต่ละท่านที่ทดสอบครบทุกท่า การออกตัวแต่ละท่านนักกีฬาถูกวัดความเร็ว การเร่งความเร็ว ความยาวก้าว และจำนวนก้าว แล้วได้รับการฝึกการออกตัวทั้ง 3 ท่า จำนวน 4 สัปดาห์ ๆ ละ 3 วัน ๆ ละ 1 ท่าออกตัว วิเคราะห์ข้อมูลด้วยสถิติการวิเคราะห์ความแปรปรวนสองทางแบบวัดซ้ำเพื่อวิเคราะห์ความแตกต่างของความเร็ว การเร่งความเร็ว จำนวนก้าว และความยาวก้าว ระหว่างการออกตัววิ่งทั้ง 3 รูปแบบ และ 3 ระยะทางการวิ่ง

ผลการวิจัยพบว่า ก่อนการฝึก การออกตัวด้วยบล็อกสตาร์ทและท่า 2 จุด มีความเร็วที่ระยะทาง 5, 10, 30 เมตร แตกต่างกันอย่างมีนัยสำคัญทางสถิติที่ระดับ .05 แต่ไม่พบความแตกต่างกันของการเร่งความเร็ว ความยาวก้าว และจำนวนก้าว ระหว่างการออกตัวแต่ละแบบ เช่นเดียวกัน หลังการฝึก การออกตัวด้วยบล็อกสตาร์ทและท่า 2 จุด ยังคงมีความเร็ว แตกต่างกันทั้ง 3 ระยะทางอย่างมีนัยสำคัญทางสถิติที่ระดับ .05 และไม่พบความแตกต่างกันของการเร่งความเร็ว ความยาวก้าว และจำนวนก้าว ระหว่างการออกตัวแต่ละแบบ สรุป การออกตัวด้วยท่า 2 จุด นักกีฬาทำความเร็วได้ดีกว่าท่าบล็อกสตาร์ททั้งก่อนและหลังการฝึกแสดงให้เห็นว่า นักกีฬาจะมีความคุ้นชินกับการออกตัวด้วยท่าที่ยืน (2 จุด) แม้จะมีการฝึกออกตัวด้วยบล็อกสตาร์ทและท่า 3 จุดแล้วก็ตาม ผู้ฝึกสอนจึงมีความจำเป็นที่จะต้องฝึกการออกตัวด้วยบล็อกสตาร์ทให้กับนักกีฬาเพื่อการออกตัววิ่งระยะสั้นใช้การออกตัวด้วยบล็อกสตาร์ท

คำสำคัญ: การออกตัว, ความเร็ว, การเร่งความเร็ว, ความยาวก้าว, จำนวนก้าว

นพกานะวิจัย

การศึกษาและเปรียบเทียบผลการฝึกการออกตัว 3 รูปแบบที่มีต่อความเร็วและการเร่งความเร็วระยะทาง 30 เมตร ของนักวิ่งระยะสั้นระดับมหาวิทยาลัย
 A STUDY AND COMPARISON OF THE EFFECTS OF 3 FORMS OF START TRAINING ON THE SPEED AND ACCELERATION OF THE 30-METER DISTANCE OF UNIVERSITY SPRINTERS

A STUDY AND COMPARISON OF THE EFFECTS OF 3 FORMS OF START TRAINING ON THE SPEED AND ACCELERATION OF THE 30-METER DISTANCE OF UNIVERSITY SPRINTERS

Preecha thani Sonthaya Sriramatr*

Department of Sports Science, Faculty of Physical Education, Srinakharinwirot University

*Corresponding author

E-mail address: Preecha.thani@g.swu.ac.th

Received: July 7, 2023

Revised: August 21, 2023

Accepted: December 22, 2023:

Abstract

This research studies and compares speed, acceleration, stride length and stride count in the block start, 2-point and 3-point sprint starts. A group of 16 subjects were cross-over design into the testing group for each exercise until all exercises were tested. Each starting position of the athlete was measured for speed, acceleration, stride length and stride count and received training for all 3 sprint starts for 4 weeks, 3 days per week, 1 sprint start a day. Data were analyzed using two-way ANOVA with repeated measures to analyze differences in speed, acceleration, stride count and stride length between 3 sprint starts and 3 running distances. The results showed that before the training, the block start and the 2-point start were significantly different at the 5, 10, 30 meters distance at the .05 level, but there was no difference in the speed at the 5, 10 and 30 meter distance of acceleration, stride length and stride count during each start. Similarly, after training, the block start and the 2-point start still had a statistically significant difference across the 3 distances at the .05 level, and there was no difference in acceleration, stride length and the number of steps between each start. Conclusion: The 2-point start, the athlete's speed was better than the block start before and after training, indicating that athletes are likely to get used to the standing (2-point start) even with block start training and 3-point start. So it is necessary for the trainer to practice the block start for athletes because the sprint start uses a block start.

Keywords: sprint starts, speed, acceleration, stride length, number of steps

บทนำ

กรีฑาประเภทระยะสั้น หมายถึงการวิ่งด้วยความเร็วสูงสุดไม่เกิน 400 เมตร จากจุดเริ่มต้นถึงเส้นชัย โดยเฉพาะการวิ่ง 100 เมตร เป็นรายการแข่งขันที่นักกีฬาแต่คนจะได้แสดงขีดความสามารถด้านความเร็วสูงสุดของมา การวิ่ง 100 เมตร ประกอบไปด้วยช่วงต่าง ๆ ดังนี้ ช่วงเร่งความเร็ว (Acceleration) ช่วงความเร็วสูงสุด (Maximum Speed) และช่วงความเร็วอุดหน (Speed Endurance) และปัจจัยที่ส่งผลต่อความเร็วและชัยชนะคือความสามารถในการออกตัววิ่งจากบล็อกสตาร์ท (Starting Blocks) ของนักกีฬา ในทางกลไกการออกตัววิ่งจากบล็อกสตาร์ทช่วยเพิ่มองค์ประกอบในการเคลื่อนที่ไปข้างหน้าเพื่อให้ได้ความเร็วสูงสุดของแรงปฏิกิริยาจากพื้น (Ground reaction force: GRF) ซึ่งนำไปสู่การเพิ่มขึ้นของการเร่งความเร็วไปข้างหน้า (Macadam et al., 2019) การออกตัววิ่งที่ดีจึงมีความสำคัญมาก โดยเฉพาะการวิ่งระยะสั้นที่ต้องออกจากบล็อกสตาร์ท นักวิ่งระยะสั้นต้องมีทักษะในการออกตัวที่ดีและถูกต้องจึงจะสามารถช่วยให้ออกวิ่งได้เร็วที่สุด มีแรงส่งไปข้างหน้ามากที่สุด และใช้เวลาออกจากจุดเริ่มต้นน้อยที่สุด (Otsuka et al., 2017) นักวิ่งระยะสั้นที่มีการออกตัววิ่งและการเร่งความเร็วที่ดีกว่าคู่แข่งขันจะประสบความสำเร็จในการแข่งขัน (Hamner & Delp, 2013)

การเร่งความเร็วเป็นปัจจัยสำคัญที่ส่งผลต่อความได้เปรียบคู่แข่งขัน โดย Martínez-Valencia et al. (2015) อธิบายว่าในการเร่งความเร็ว การเพิ่มน้ำหนักตัวจะส่งผลให้ความเร็วในการวิ่งลดลงทั้งในการวิ่ง 20 เมตร และ 30 เมตร โดยเวลาในการวิ่งเมื่อลากด้วยน้ำหนัก 10%, 15% และ 20% ของน้ำหนักตัวมีความแตกต่างกับเวลาในการวิ่งที่ไม่ได้ลากน้ำหนักทั้งระยะ 20 เมตร และ 30 เมตร (Martínez-Valencia et al., 2015) นอกจากนี้ ทำการวิ่งยังมีความแตกต่างเมื่อเทียบกับการวิ่งด้วยการลากน้ำหนักทั้งสองระยะทาง ทั้งนี้ Maulder et al. (2008) กล่าวว่าเมื่อเพิ่มน้ำหนักขึ้นระหว่างการลากเลื่อนด้วยน้ำหนักประมาณ 20% ของน้ำหนักตัวจะทำให้การออกบล็อกสตาร์ทใช้เวลามากขึ้นและทำให้เกิดการเคลื่อนที่ในแนวโน้มมากขึ้นในช่วงระยะการถีบตัวออก (drive) การลากน้ำหนักประมาณ 20% ทำให้นักวิ่งระยะสั้นลดความยาวของก้าวแรก ซึ่งอาจเป็นผลมาจากการลากลากตัว (Maulder et al., 2008) นอกจากนี้ Wang et al. (2021) ระบุว่าความกว้างของก้าว (Step Width) ให้ความมั่นคงกับร่างกายที่ดีกว่า เพื่อเคลื่อนที่และรักษาจุดศูนย์กลางของร่างกาย (Center of Mass) ในการเร่งความเร็วในช่วงการออกตัววิ่ง ขณะที่ Hamner et al. (2013) กล่าวว่าการเร่งความเร็วของจุดศูนย์กลางของร่างกายเป็นปัจจัยหลักในการเร่งความเร็วไปข้างหน้าและยกจุดศูนย์กลางของร่างกายขึ้น โดยการเร่งความเร็วมีผลอย่างมากต่อความเร็วในการวิ่ง

การออกตัวจากบล็อกสตาร์ท (Block Start) ถือได้ว่าสำคัญที่สุดในการซิงความได้เปรียบจากคู่แข่งขันและมีผลต่อการกำหนดผลแพ้หรือชนะ การออกตัววิ่งที่ดีคือการออกตัวที่สามารถช่วยให้ออกวิ่งได้เร็วที่สุด มีแรงส่งตัวไปข้างหน้ามากที่สุดและทำให้เสียเวลาห้อยที่สุด อย่างไรก็ได้ Otsuka et al. (2017) พบว่าปฏิกิริยาแรงระหว่างความยาวข้อต่อ เวลาปฏิกิริยา และระยะเวลาการออกบล็อกสตาร์ท ส่งผลต่อการเคลื่อนไหวของแขน ขา และเวลาปฏิกิริยาทั่วร่างกาย สำหรับสัญญาณปล่อยตัวการออกตัววิ่งของนักวิ่งระยะสั้น อย่างไรก็ตาม Otsuka et al. (2015) อธิบายว่าระยะบล็อกระยะห่างท่าทางการเหยียดตัวของสะโพกและมุกการหมุนภายนอกขาทั้งสองข้างที่กว้างกว่าและเล็กกว่า ความกว้างของท่าทางที่กว้างขึ้นส่งผลต่อการเคลื่อนไหวของข้อต่อสะโพกในขาทั้งสองข้างและการสร้างพลังที่ข้ามในช่วงการออกบล็อกสตาร์ท

การออกตัวด้วยท่า 2 จุด หรือการยืนออกตัว (Standing start) เป็นท่าการออกตัววิ่งที่มีลักษณะเป็นท่ายืนแบบเท้า เท้าตาม ปลายเท้าหลังอยู่ในระนาบเดียวกันกับสันเท้าด้านหน้า ที่นิยมใช้ฝึกความเร็วทั่วไป โดย Macadam et al. (2019) กล่าวว่ากำลังสูงสุดและแรงปฏิกิริยาจากพื้น (GRF) ในแนวตั้งและแนวโน้มมีค่าในการเริ่มต้นแบบยืนที่ระยะ 5 เมตร ขณะที่ Standing et al. (2017) แสดงให้เห็นว่าเวลาในการวิ่ง 5 เมตร และ 10 เมตร ลักษณะความถี่ของก้าวและเวลาการลอดตัวระหว่างก้าวที่สามมีความสัมพันธ์กับประสิทธิภาพในการวิ่งมากที่สุด เช่นเดียวกัน การศึกษาพบว่า กลไกของ

บทความวิจัย

การศึกษาและเปรียบเทียบผลการฝึกการออกตัว 3 รูปแบบที่มีต่อความเร็วและการเร่งความเร็วระยะทาง 30 เมตร ของนักวิ่งระยะสั้นระดับมหาวิทยาลัย

A STUDY AND COMPARISON OF THE EFFECTS OF 3 FORMS OF START TRAINING ON THE SPEED AND ACCELERATION OF THE 30-METER DISTANCE OF UNIVERSITY SPRINTERS

แขนทำหน้าที่เพิ่มประสิทธิภาพในการวิ่งสูงสุด ในขณะที่กำลัง แรง ความเร็ว ส่งผลต่อประสิทธิภาพในการวัดกำลังและความสามารถในการเร่งความเร็วของนักกีฬา ระหว่างการเร่งความเร็ว 30 เมตร (Macadam et al., 2020)

การออกตัวด้วยท่า 3 จุด (3 point start) ถือได้ว่าเป็นทักษะการออกตัวที่นิยมฝึกกันอย่างแพร่หลายในแต่ละชนิดกีฬา เช่น ฟุตบอล อเมริกันฟุตบอล กล่าวไว้ว่า ท่า 3 จุด สามารถใช้ในการฝึกความเร็วและท่ามีความมั่นคงปลอดภัย สำหรับ ผู้เล่นฟุตบอล (Bonnechere et al., 2014) ท่า 3 จุด อาจแสดงถึงวิธีการออกตัวที่ใช้งานได้จริง ซึ่งเป็นทักษะที่รูปแบบคล้ายกับการออกบล็อกสตาร์ท (Block Start) ของนักวิ่งระยะสั้นที่สามารถสร้างความเร็วต้นได้ดี แต่อย่างไรก็ตาม ในนักวิ่งระยะสั้นก็ยังไม่นิยมฝึกท่า 3 จุด มากนัก (Haugen et al., 2012)

ด้วยเหตุผลดังกล่าวมาข้างต้น ผู้วิจัยจึงมีความสนใจศึกษาและเปรียบเทียบผลการฝึกการออกตัวที่ 3 แบบระหว่างการออกตัวด้วยท่าบล็อกสตาร์ท (Block start) ท่ายืน (Standing start) และท่า 3 จุด (3 point start) ว่ามีผลต่อความเร็ว การเร่งความเร็ว จำนวนการก้าว และความยาวก้าว ในการออกตัววิ่งแต่กันหรือไม่ ซึ่งผลที่ได้จะใช้เป็นแนวทางในการฝึกซ้อมนักกีฬาเพื่อพัฒนาการออกตัวของนักกีฬาระยะสั้น และเพื่อเป็นแนวทางสำหรับผู้วิจัยที่สนใจเกี่ยวกับการออกตัวที่ต่อไป

วัตถุประสงค์

- เพื่อศึกษาการออกตัว 3 รูปแบบที่มีต่อ ความเร็ว การเร่งความเร็ว ความยาวก้าว และจำนวนก้าว ในการออกตัววิ่งระยะทาง 30 เมตร ของนักวิ่งระยะสั้นระดับมหาวิทยาลัย
- เพื่อเปรียบเทียบผลของการฝึกการออกตัว 3 รูปแบบที่มีต่อความเร็ว การเร่งความเร็ว ความยาวก้าว และจำนวนก้าว ในการออกตัววิ่งระยะทาง 30 เมตร ของนักวิ่งระยะสั้นระดับมหาวิทยาลัย

วิธีดำเนินการวิจัย

คณะกรรมการจริยธรรม

งานวิจัยนี้ได้ผ่านการรับรองจากคณะกรรมการการทำวิจัยในมนุษย์จากสถาบันยุทธศาสตร์ทางบัญญາและวิจัย มหาวิทยาลัยศรีนครินทรวิโรฒ หนังสือรับรองเลขที่ SWUEC-G- 367/2565

ประชากรและกลุ่มตัวอย่าง (กลุ่มเป้าหมาย)

การคัดเลือกจากกลุ่มประชากรที่เป็นนักกีฬาระยะสั้น (Sprinter) ทำการสุ่มกลุ่มตัวอย่างแบบเฉพาะเจาะจง (Purposive Random sampling) โดยสุ่มจากนักกีฬาที่เคยเข้าร่วมการแข่งขันกีฬาแห่งชาติ จำนวน 16 คน ซึ่งอ้างอิงมาจาก การศึกษา ก่อนหน้านี้ และทำการศึกษาแบบไขว้สลับ (Crossover design)

เกณฑ์การคัดเข้า

- เป็นนักกีฬาระยะสั้น (Sprinter) ที่มีการฝึกซ้อมเพื่อเป็นตัวแทนมหาวิทยาลัยเข้าร่วมการแข่งขันกีฬาระดับอุดมศึกษาในประเทศไทย
- เป็นนักกีฬาที่มีการฝึกซ้อมอย่างน้อย 5 ครั้งต่อสัปดาห์
- ไม่มีอาการบาดเจ็บที่เป็นอุปสรรคต่อการวิจัย

เกณฑ์การคัดออก

- นักกีฬาที่มีอาการบาดเจ็บ
- นักกีฬาที่มีระยะเวลาการฝึกซ้อมไม่ถึง 3 เดือน

เครื่องมือที่ใช้ในการวิจัย

1. โปรแกรมการฝึกของกลุ่มที่ 1 (บล็อกสตาร์ท การยืนออกตัว ท่า 2 จุด และการออกตัวด้วยท่า 3 จุด)
2. โปรแกรมการฝึกของกลุ่มที่ 2 (การยืนออกตัวท่า 2 จุด การออกตัวด้วยท่า 3 จุด และบล็อกสตาร์ท)
3. โปรแกรมการฝึกของกลุ่มที่ 3 (การออกตัวด้วยท่า 3 จุด บล็อกสตาร์ท และการยืนออกตัว ท่า 2 จุด)
4. เครื่องมือวัดการเร่งความเร็ว ความยาวก้าว และจำนวนการก้าว (ยี่ห้อ MICROGATE รุ่น OPTOJUMP NEXT ITALY)
5. เครื่องมือวัดเวลา (ยี่ห้อ MICROGATE รุ่น WITTY WIRELESS TRAINING TIMER)

ขั้นตอนการดำเนินการวิจัย

1. ชี้แจงรายละเอียดให้กับกลุ่มตัวอย่างเข้าใจและลงนามหนังสือยินยอมเข้าร่วมโครงการวิจัยตามความสมัครใจ
2. เก็บข้อมูลอายุ น้ำหนัก ส่วนสูง และอัตราการเต้นของหัวใจขณะพัก 1 ครั้ง หน่วยเป็นครั้ง/นาที ด้วยเครื่องวัดชนิดสอดแขน OMRON รุ่น HBP9030 ในห้องปฏิบัติการทางวิทยาศาสตร์การกีฬาและการออกกำลังกาย ก่อนการเก็บข้อมูล
3. อธิบายวิธีการปฏิบัติในแต่ละขั้นตอนของการเก็บข้อมูลให้ผู้เข้ารับการทดสอบทราบ
4. ทำการทดสอบออกตัว โดยแบ่งออกเป็น 3 กลุ่ม แต่ละกลุ่มทดสอบครั้งละ 1 รูปแบบ จากนั้นทำการลับไขว้ รูปแบบการออกตัวในครั้งที่ 2 และ 3 ตามลำดับ กลุ่มตัวอย่างดอกรก้าวหรือฝึกซ้อมกีฬาอย่างน้อย 24 ชั่วโมงก่อน การทดสอบ โดยการทดสอบแต่ละครั้งจะเว้นระยะห่าง 1 วัน เรียงตามลำดับดังนี้
 - 1) ครั้งที่ 1 ทำการทดสอบการออกตัว (กลุ่ม 1 เทคนิคบล็อกสตาร์ท กลุ่ม 2 เทคนิคการยืนออกตัวด้วยท่า 2 จุด และกลุ่ม 3 เทคนิคการออกตัวด้วยท่า 3 จุด)
 - 2) ครั้งที่ 2 ทำการทดสอบการออกตัว (กลุ่ม 1 เทคนิคการยืนออกตัวด้วยท่า 2 จุด กลุ่ม 2 เทคนิคการออกตัวด้วยท่า 3 จุด และกลุ่ม 3 เทคนิคบล็อกสตาร์ท)
 - 3) ครั้งที่ 3 ทำการทดสอบการออกตัว (กลุ่ม 1 เทคนิคการออกตัวด้วยท่า 3 จุด กลุ่ม 2 เทคนิคบล็อกสตาร์ท และกลุ่ม 3 เทคนิคการยืนออกตัวด้วยท่า 2 จุด)
5. ดำเนินการแบ่งกลุ่มตัวอย่างออกเป็น 3 กลุ่ม ได้แก่ กลุ่มฝึกการออกตัวด้วยบล็อกสตาร์ท (Block start) กลุ่มฝึกการยืนออกตัวท่า 2 จุด (Standing start) และกลุ่มฝึกการออกตัวด้วยท่า 3 จุด (3 points start) ทำการฝึกการออกตัว 4 สัปดาห์ ๆ ละ 3 วัน ๆ ละ 1 รูปแบบในแต่ละรูปแบบฝึกจำนวน 3 เที่ยว พักเที่ยวละ 3 นาที จากนั้นทำการลับไขว้รูปแบบการออกตัวในวันที่ 2 และ 3 ตามลำดับ
6. ผู้เข้าร่วมการวิจัยเริ่มทำการทดสอบตามรูปแบบที่กำหนดไว้ และเข้ารับโปรแกรมการฝึกการออกตัวเป็นเวลา 4 สัปดาห์
7. ทำการทดสอบการออกตัววิ่งด้วยบล็อกสตาร์ท (Block start) จำนวน 3 เที่ยว แต่ละเที่ยวพัก 3 นาที โดยการออกตัวแต่ละครั้งจะวัดการเร่งความเร็ว ความยาวก้าว และจำนวนการก้าว ซึ่งจะถูกบันทึกด้วยโปรแกรม Microgate model Optojump next Italy ตัวเครื่องจะมีการติดตั้งแผ่นเซ็นเซอร์ความยาวแผ่นละ 1 เมตร มีความยาวทั้งหมด 30 เมตร นอกจากนี้ความเร็วถูกบันทึกด้วย Microgate model Witty Wireless Training Timer ตัวเครื่องมีติดตั้งทั้งหมด 4 จุด ประกอบด้วยระยะ 5, 10, 30 เมตร ตัวเครื่องใช้เซ็นเซอร์ในการจับเวลา โดยจะเริ่มจับเวลาหลังจากมีอัตราของร่างกายตัดผ่านเซ็นเซอร์
8. นำข้อมูลที่ได้มาทำการวิเคราะห์ข้อมูลทางสถิติเพื่อทำการสรุปและอภิปรายผล

บทความวิจัย

การศึกษาและเปรียบเทียบผลการฝึกการออกตัว 3 รูปแบบที่มีต่อความเร็วและการเร่งความเร็วระยะทาง 30 เมตร ของนักวิ่งระยะสั้นระดับมหาวิทยาลัย

A STUDY AND COMPARISON OF THE EFFECTS OF 3 FORMS OF START TRAINING ON THE SPEED AND ACCELERATION OF THE 30-METER DISTANCE OF UNIVERSITY SPRINTERS

การวิเคราะห์ข้อมูล

วิเคราะห์ข้อมูลหาค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานของอายุ น้ำหนัก ส่วนสูง และดัชนีมวลกายของอาสาสมัคร อัตราการเต้นของหัวใจ ความเร็ว ความเร่ง จำนวนการก้าว และความยาวก้าว ใน การเริ่มต้นออกวิ่งด้วยความเร็วสูงสุดระยะ 30 เมตร แต่ละเทคนิคการเริ่มต้นออกวิ่ง โดยใช้ Shapiro-Wilk test เพื่อวิเคราะห์การแจกแจงแบบโค้งปกติของตัวแปรตาม และใช้สถิติ Two-way ANOVA with repeated measures เพื่อวิเคราะห์ความแตกต่างของเวลา จำนวนการก้าว และ ความยาวก้าว ระหว่างการเริ่มต้นออกวิ่ง 3 แบบ หากพบความแตกต่างอย่างมีนัยสำคัญจะทำการทดสอบความแตกต่าง เป็นรายคู่ของ ความเร็ว ความเร่ง จำนวนการก้าว และความยาวก้าว ระหว่างกัน ด้วยสถิติ Bonferroni

ผลการวิจัย

ตาราง 1 ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานและผลการวิเคราะห์ความแตกต่างของแต่ละตัวแปร ก่อนการฝึก

ตัวแปร	ระยะทาง	รูปแบบการออกตัว			ปฏิสัมพันธ์ (ระยะทาง x รูปแบบ การออกตัว)	
		2 จุด		บล็อกสตาร์ท		
		\bar{X} (SD)	\bar{X} (SD)			
ความเร็ว	5 เมตร	1.0700±.07694*	1.0813±.06965	1.1625±.21079*	.329	
	10 เมตร	1.8050±.10979*	1.8156±.08618	1.9006±.16027*		
	30 เมตร	4.2381±.17661*	4.2425±.17624	4.4069±.21194*		
การเร่งความเร็ว	5 เมตร	.8200±.94366	.8944±1.25425	1.0800±.83472	.758	
	10 เมตร	.3706±.88782	.1219±.75258	.1313±.93975		
	30 เมตร	-.1419±.46869	-.1287±.69947	.1494±.69130		
ความยาวก้าว	5 เมตร	1.3737±.11383	1.4025±.11204	1.3625±.09504	.329	
	10 เมตร	1.6438±.09632	1.6413±.10308	1.6175±.09212		
	30 เมตร	2.0438±.13216	2.1150±.15942	2.0612±.15954		
จำนวนก้าว	5 เมตร	4.0625±.25000	4.0625±.25000	4.2500±.44721	.334	
	10 เมตร	7.3125±.60208	7.3750±.61914	7.4375±.51235		
	30 เมตร	18.3125±1.30224	18.3750±1.20416	17.9375±1.43614		

* มีนัยสำคัญทางสถิติของความเร็วที่ระยะทาง 5, 10 และ 30 เมตร ระหว่าง 2 จุด กับบล็อกสตาร์ท

จากตารางที่ 1 พบว่า ความเร็วระหว่างกันทั้ง 3 ระยะทาง มีปฏิสัมพันธ์กันระหว่างการออกตัวแต่ละรูปแบบและ ระยะทางการวิ่งที่ต่างกันไม่มีปฏิสัมพันธ์กันต่อความเร็ว ระยะทางการวิ่งมีผลต่อความเร็วในการออกตัวที่แตกต่างกันอย่างมี นัยสำคัญทางสถิติ และในการออกตัวแต่ละรูปแบบ (กลุ่ม) มีความเร็วแตกต่างกันในทุกระยะทางการวิ่ง ความสามารถในการเร่งความเร็ว ระหว่างการออกตัวแต่ละรูปแบบและระยะทางการวิ่งที่แตกต่างกันไม่มีปฏิสัมพันธ์กันต่อความเร็ว ระยะทางการวิ่งมีผลต่อการเร่งความเร็วแตกต่างกัน และการออกตัวแต่ละรูปแบบมีผลต่อการเร่งความเร็วไม่แตกต่างกัน ในทุก

ระยะทางการวิ่ง ทั้งนี้ ปฏิสัมพันธ์ระหว่างระยะทางและการออกตัวที่แตกต่างกันไม่มีปฏิสัมพันธ์กัน ความยาวก้าวในการวิ่งแต่ละระยะทางมีความแตกต่างกัน แต่กันการออกตัวแต่ละรูปแบบมีผลต่อความยาวก้าวไม่แตกต่างกัน นอกจากนี้ จำนวนก้าวระหว่างระยะทางการวิ่งและกลุ่มไม่มีปฏิสัมพันธ์กันต่อจำนวนก้าว ระยะทางการวิ่งมีผลต่อ จำนวนก้าวที่แตกต่างกันอย่างมีนัยสำคัญทางสถิติ และการออกตัวแต่ละรูปแบบมีผลต่อจำนวนก้าวในการวิ่งไม่แตกต่างกัน

ตาราง 2 ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานและผลการวิเคราะห์ความแตกต่างของแต่ละตัวแปร หลังการฝึก

ตัวแปร	ระยะทาง	รูปแบบการออกตัว			ปฏิสัมพันธ์ (ระยะทาง x รูปแบบ การออกตัว)	
		2 จุด		บล็อกสตาร์ท		
		\bar{X} (SD)	\bar{X} (SD)			
ความเร็ว	5 เมตร	1.0188±.05451*	1.0681±.06978	1.0944±.05597*		
	10 เมตร	1.7563±.07302*	1.8100±.08862	1.8544±.07061*		
	30 เมตร	4.1225±.14572*	4.1969±.14988	4.2494±.15241*		
การเร่งความเร็ว	5 เมตร	.8475±.69463	.8269±.62109	.8069±.57672		
	10 เมตร	.3288±.92554	.8919±1.05465	.2531±.91826		
	30 เมตร	-.0138±.90752	-.1031±.77504	.4144±.90691		
ความยาวก้าว	5 เมตร	1.4306±.12342	1.4225±.09781	1.4169±.09871		
	10 เมตร	1.6325±.13840	1.6875±.11693	1.6594±.08698		
	30 เมตร	2.0544±.09466	2.0494±.16135	2.0450±.12607		
จำนวนก้าว	5 เมตร	4.1875±.40311	4.2500±.44721	4.1875±.40311		
	10 เมตร	7.3750±.61914	7.2500±.77460	7.3750±.50000		
	30 เมตร	18.0000±.89443	17.8125±.98107	18.2500±1.18322		

* มีนัยสำคัญทางสถิติของความเร็วที่ระยะทาง 5, 10 และ 30 เมตร ระหว่าง 2 จุด กับบล็อกสตาร์ท

จากการที่ 2 พบว่า ความเร็วระหว่างก้าวทั้ง 3 ระยะทาง มีปฏิสัมพันธ์ระหว่างการออกตัวแต่ละรูปแบบและระยะทางการวิ่งที่แตกต่างกันไม่มีปฏิสัมพันธ์กันต่อความเร็ว ระยะทางการวิ่งมีผลต่อความเร็วแตกต่างกันอย่างมีนัยสำคัญทางสถิติ และการออกตัวแต่ละรูปแบบ (กลุ่ม) มีความเร็วแตกต่างกันในทุกระยะทางการวิ่ง ความสามารถในการเร่งความเร็วระหว่างการออกตัวแต่ละรูปแบบและระยะทางการวิ่งที่ต่างกันไม่มีปฏิสัมพันธ์กันต่อการเร่งความเร็ว ระยะทางการวิ่งมีผลต่อการเร่งความเร็วแตกต่างกันอย่างมีนัยสำคัญทางสถิติ และการออกตัวแต่ละรูปแบบ (กลุ่ม) มีการเร่งความเร็วแตกต่างกันในทุกระยะทางการวิ่ง ทั้งนี้ ปฏิสัมพันธ์ระหว่างการออกตัวแต่ละรูปแบบและระยะทางการวิ่งที่ต่างกันไม่มีปฏิสัมพันธ์กันต่อความยาวก้าว ระยะทางการวิ่งมีผลต่อความยาวก้าวแตกต่างกันอย่างมีนัยสำคัญทางสถิติ และการออกตัวแต่ละรูปแบบมีความยาวก้าวไม่แตกต่างกันในทุกระยะทางการวิ่ง นอกจากนี้ จำนวนก้าวระหว่างการออกตัวแต่ละรูปแบบ และระยะทางการวิ่งที่ต่างกันไม่มีปฏิสัมพันธ์ต่อจำนวนก้าว ระยะทางการวิ่งมีผลต่อจำนวนก้าวที่แตกต่างกันอย่างมีนัยสำคัญทางสถิติ และการออกตัวแต่ละรูปแบบมีจำนวนก้าวไม่แตกต่างกันในทุกระยะทางการวิ่ง

บทความวิจัย

การศึกษาและเปรียบเทียบผลการฝึกการออกตัว 3 รูปแบบที่มีต่อความเร็วและการเร่งความเร็วระยะทาง 30 เมตร ของนักวิ่งระยะสั้นระดับมหาวิทยาลัย
 A STUDY AND COMPARISON OF THE EFFECTS OF 3 FORMS OF START TRAINING ON THE SPEED AND ACCELERATION OF THE 30-METER DISTANCE OF UNIVERSITY SPRINTERS

สรุปผลและอภิปรายผล

การศึกษานี้เป็นการศึกษาและเปรียบเทียบความเร็ว การเร่งความเร็ว ความยาวก้าว และจำนวนก้าว ระหว่างการออกตัว 3 รูปแบบที่ระยะทาง 30 เมตรของนักวิ่งระยะสั้นระดับมหาวิทยาลัย ก่อนการฝึกและหลังการฝึกการออกตัวพบว่าการออกตัวด้วยบล็อกสตาร์ท (Block Start) และท่า 2 จุด มีความแตกต่างกันของความเร็วในทั้ง 3 ระยะทางการวิ่งอย่างมีนัยสำคัญทางสถิติที่ระดับ .05 แต่ไม่พบความแตกต่างกันของการเร่งความเร็ว ความยาวก้าว และจำนวนก้าว ระหว่างการออกตัวแต่ละแบบในทั้ง 3 ระยะทางการวิ่ง เมื่อพิจารณาค่าเฉลี่ยของเวลาการวิ่งจากการออกตัวด้วยบล็อกสตาร์ท (Block Start) และท่า 2 จุด พบว่า การออกตัวท่า 2 จุด มีค่าเฉลี่ยของเวลาน้อยกว่าการออกตัวด้วยบล็อกสตาร์ท (Block Start) ทั้งก่อนและหลังได้รับการฝึกการออกตัว

เนื่องจากการออกตัวด้วยบล็อกสตาร์ท (Block Start) สามารถช่วยให้ออกวิ่งได้เร็ว มีแรงส่งตัวไปข้างหน้า และทำให้ประหยัดเวลามากที่สุด สอดคล้องกับงานวิจัยก่อนหน้าที่พบว่าการออกตัวด้วยบล็อกสตาร์ทจะมีท่าทางการเหยียดตัวสะโพกและมุ่งขาทั้งสองข้างที่กว้าง ความกว้างและมุมของขาทั้งสองข้างส่งผลต่อการเคลื่อนไหวของข้อต่อสะโพกทั้งสองข้าง สร้างพลังในช่วงออกบล็อกสตาร์ท (Otsuka et al., 2015) ท่าทางการจับบล็อกสตาร์ทที่มีระยะห่างของสะโพกและเข่าขวามาก 110 - 100 องศา ในตำแหน่ง “ระวัง” (Set) มีผลต่อประสิทธิภาพการออกตัว นอกจากนี้การออกตัววิ่งด้วยบล็อกสตาร์ทยังช่วยเพิ่มองค์ประกอบในการเคลื่อนที่ไปด้านหน้าเพื่อให้ได้ความเร็วสูงสุด ซึ่งจะนำไปสู่ประสิทธิภาพในการวิ่งที่เพิ่มขึ้น (Macadam et al., 2019)

การศึกษานี้พบว่าการออกตัวท่า 2 จุด (Standing start) นักกีฬาทำความเร็วได้ดีกว่าท่าบล็อกสตาร์ทอย่างมีนัยสำคัญทางสถิติ ซึ่งท่า 2 จุดเป็นท่าทางการยืนออกแบบเทาหน้า เท้าตาม นิยมใช้ฝึกความเร็วทั่วไป การสร้างกำลังสูงสุด และแรงปฏิกิริยาจากพื้น (GRF) แนวตั้งและแนวอน จากการเริ่มต้นวิ่งท่า 2 จุด (Standing start) สอดคล้องกับ Macadam et al. (2019) ที่พบว่าการฝึกความเร็วท่า 2 จุด ระยะ 6 สัปดาห์ จะช่วยเพิ่มประสิทธิภาพในการวิ่ง การออกตัวท่า 2 จุด เป็นรูปแบบที่เหมาะสมที่สุดสำหรับนักกีฬามือใหม่ที่จะใช้ฝึกความเร็ว ท่าทางการยืนเท้าข้างหนึ่งวางไปข้างหน้า ปลายเท้าหลัง อยู่ในระหว่างเดียวกันกับสันเท้าด้านหน้า ระยะห่างระหว่างเท้าทั้งสองข้างประมาณหนึ่งฟุต ปลายเท้าซึ่งตรงไปข้างหน้าสันเท้ากันขี้เล็กน้อย และเป็นรูปแบบการฝึกในการออกแรงผลักไปด้านหน้าเพื่อสร้างแรงถีบจากพื้น ทำให้สร้างความเร็วได้ภายในเวลาไม่กี่วินาที เพราะว่านักกีฬาทุกคนที่ต้องการเพิ่มความเร็วและประสิทธิภาพการวิ่งจะได้รับประโยชน์จากการเร่งความเร็วและการฝึกความเร็วสูงสุด (Borba et al., 2019)

นอกจากนี้ผู้วิจัยไม่พบความแตกต่างของการออกตัวด้วยท่า 3 จุด (3 point start) กับท่า 2 จุด (Standing start) ของความเร็ว การเร่งความเร็ว ความยาวก้าว และจำนวนก้าว ทั้ง 3 ระยะทาง และบล็อกสตาร์ท (Block Start) กับท่า 3 จุด (3 point start) ทั้ง 3 ระยะทาง เพราะทั้งความเร็ว การเร่งความเร็ว ความยาวก้าว และจำนวนก้าว ที่ระยะ 30 เมตร ทั้งนี้อาจเป็นเพราะนักกีฬาปกติจะใช้การยืนออกตัว ซึ่งไม่คุ้นเคยกับการออกตัวด้วยบล็อกสตาร์ท ซึ่งปกติการออกตัวจากบล็อกสตาร์ทจะช่วยให้นักกีฬามีความเร็วและความเร่งที่ดีกว่า และอาจเป็นเพราะนักกีฬาได้รับการฝึกซ้อมที่มีระยะเวลาการฝึกสัมเพียงแค่ 4 สัปดาห์ อาจส่งผลให้นักกีฬายังไม่เกิดการกระตุนของร่างกายจึงทำให้ไม่มีการพัฒนาและปรับตัวให้เข้ากับรูปแบบการออกตัว

ข้อเสนอแนะ

การออกตัวด้วยท่า 2 จุด นักกีฬาทำความเร็วได้ดีกว่าท่าบล็อกสตาร์ททั้งก่อนและหลังการฝึกซ้อมที่อาจเป็นเพราะนักกีฬาน่าจะมีความคุ้นเคยกับการออกตัวด้วยท่า 2 จุด (ยืน) แม้จะมีการฝึกออกตัวด้วยบล็อกสตาร์ทและท่า 3 จุดแล้วก็ตาม ผู้ฝึกสอนจึงมีความจำเป็นที่จะต้องฝึกการออกตัวด้วยบล็อกสตาร์ทให้กับนักกีฬา เพราะการออกตัววิ่งระยะสั้นใช้การออกตัวด้วยบล็อกสตาร์ท

นทความวิจัย

การทีกษาและเปรียบเทียบผลการฝึกการออกตัว 3 รูปแบบที่มีต่อความเร็วและการเร่งความเร็วระยะทาง 30 เมตร ของนักวิ่งระยะสั้นระดับมหาวิทยาลัย
A STUDY AND COMPARISON OF THE EFFECTS OF 3 FORMS OF START TRAINING ON THE SPEED AND ACCELERATION OF THE 30-METER DISTANCE OF
UNIVERSITY SPRINTERS

กิตติกรรมประกาศ

ผู้วิจัยขอขอบคุณนักกีฬาทั้ง 16 คน เจ้าหน้าที่วิทยาศาสตร์การกีฬาและคณาจารย์ภาควิชาวิทยาศาสตร์การกีฬา
คณะพลศึกษา ที่ได้สละเวลาทำให้งานวิจัยนี้สำเร็จลุล่วงไปด้วยดี

เอกสารอ้างอิง

Bonnechere, B., Beyer, B., Rooze, M., & Sint, J. S. (2014). What is the Safest Sprint Starting Position for American Football Players? *J Sports Sci Med*, 13(2), 423-429.

Hamner, S. R., & Delp, S. L. (2013). Muscle contributions to fore-aft and vertical body mass center accelerations over a range of running speeds. *J Biomech*, 46(4), 780-787.
<https://doi.org/10.1016/j.jbiomech.2012.11.024>

Haugen, T. A., Tønnessen, E., & Seiler, S. K. (2012). The difference is in the start: impact of timing and start procedure on sprint running performance. *J Strength Cond Res*, 26(2), 473-479.
<https://doi.org/10.1519/JSC.0b013e318226030b>

Macadam, P., Nuell, S., Cronin, J. B., Nagahara, R., Uthoff, A. M., Graham, S. P., Tinwala, F., & Neville, J. (2019). Kinematic and kinetic differences in block and split-stance standing starts during 30 m sprint-running. *Eur J Sport Sci*, 19(8), 1024-1031. <https://doi.org/10.1080/17461391.2019.1575475>

Macadam, P., Mishra, M., Feser, E. H., Uthoff, A. M., Cronin, J. B., Zois, J., Nagahara, R., & Tinwala, F. (2020). Force-velocity profile changes with forearm wearable resistance during standing start sprinting. *Eur J Sport Sci*, 20(7), 915-919. <https://doi.org/10.1080/17461391.2019.1686070>

Martínez-Valencia, M. A., Romero-Arenas, S., Elvira, J. L., González-Ravé, J. M., Navarro-Valdivielso, F., & Alcaraz, P. E. (2015). Effects of Sled Towing on Peak Force, the Rate of Force Development and Sprint Performance During the Acceleration Phase. *J Hum Kinet*, 46, 139-148.
<https://doi.org/10.1515/hukin-2015-0042>

Maulder, P. S., Bradshaw, E. J., & Keogh, J. W. (2008). Kinematic alterations due to different loading schemes in early acceleration sprint performance from starting blocks. *J Strength Cond Res*, 22(6), 1992-2002.
<https://doi.org/10.1519/JSC.0b013e31818746fe>

Otsuka, M., Kurihara, T., & Isaka, T. (2015). Effect of a Wide Stance on Block Start Performance in Sprint Running. *PLoS One*, 10(11), e0142230. <https://doi.org/10.1371/journal.pone.0142230>

Otsuka, M., Kurihara, T., & Isaka, T. (2017). Timing of Gun Fire Influences Sprinters' Multiple Joint Reaction Times of Whole Body in Block Start. *Front Psychol*, 8, 810. <https://doi.org/10.3389/fpsyg.2017.00810>

Standing, R. J., & Maulder, P. S. (2017). The Biomechanics of Standing Start and Initial Acceleration: Reliability of the Key Determining Kinematics. *J Sports Sci Med*, 16(1), 154-162.

Wang, R., Martín de Azcárate, L., Sandamas, P., Arndt, A., & Gutierrez-Farewik, E. M. (2021). The Effect of Step Width on Muscle Contributions to Body Mass Center Acceleration During the First Stance of Sprinting. *Front Bioeng Biotechnol*, 9, 636960. <https://doi.org/10.3389/fbioe.2021.636960>