

บทความวิจัย

การสร้างและหาประสิทธิภาพเครื่องยิงลูกตะกร้อแบบบ่อกี๊อัตโนมัติ

THE BUILD AND THE EFFICIENCY OF THE SEMI-AUTOMATIC SEPAK-TAKRAW BALL SHOOTING MECHANISM FOR TRAINING

การสร้างและหาประสิทธิภาพเครื่องยิงลูกตะกร้อแบบบ่อกี๊อัตโนมัติ

นันทวน ทองพิทักษ์¹ โชคชัย ไตรยสุทธิ์^{2*}

คณะศึกษาศาสตร์ มหาวิทยาลัยการกีฬาแห่งชาติ วิทยาเขตศรีสะเกษ¹

คณะศิลปศาสตร์และวิทยาศาสตร์ มหาวิทยาลัยราชภัฏศรีสะเกษ^{2*}

*Corresponding author

E-mail address: ts.chokchai@gmail.com

รับทบทวน: 11 เมษายน 2567

แก้ไขบทความ: 21 มิถุนายน 2567

ตอบรับทบทวน: 26 มิถุนายน 2567

บทคัดย่อ

การวิจัยครั้งนี้มีวัตถุประสงค์เพื่อสร้างและหาประสิทธิภาพของเครื่องยิงตะกร้อแบบบ่อกี๊อัตโนมัติ ใช้หุตชีวี การเคลื่อนที่ของวัตถุแบบโพร์เจกต์айл์ในการคำนวณการเคลื่อนที่ของลูกตะกร้อ การออกแบบระบบไฟฟ้าโดยใช้มอเตอร์ไฟฟ้าที่มีขนาดขั้น 10 แรงม้า กระแส 17 แอมป์ กระแสล็อกโรเตอร์ 50 แอมป์ ความเร็วรอบที่ 1,450 รอบต่อนาที ใช้การทดสอบพานแบบชั้นเดียวเพื่อทำการขับมูเล่ย์ตามขนาด 2,4,6,8,10 และ 12 นิ้ว ใช้ทดลองตามความเร็วรอบของเครื่องยิงลูกตะกร้อ โดยกำหนดเวลาการเคลื่อนที่ของลูกตะกร้อคงที่ 1 วินาที หลังจากนั้นทำการวัดระยะและหาประสิทธิภาพ

ผลการวิจัยพบว่า การยิงทดสอบทุกชุดการทดสอบสามารถผ่านเกณฑ์ประสิทธิภาพที่ตั้งไว้ โดยที่การยิงทดสอบชุดที่ 5 มีค่าประสิทธิภาพสูงสุดที่ร้อยละ 97.60 โดยที่ใช้มูเล่ย์ตามขนาด 5 นิ้ว ความเร็วรอบมูเล่ย์ตาม 19.27 เมตร ระยะการเคลื่อนที่ของลูกตะกร้อเฉลี่ย 18.81 เมตร จากการทดสอบและหาประสิทธิภาพพบว่า มีความเป็นไปได้ในการนำเครื่องยิงตะกร้อไปใช้สำหรับ และการฝึกซ้อมกี๊ในร่มและกลางแจ้ง

คำสำคัญ: เซปักตะกร้อ, ประสิทธิภาพ, การเคลื่อนที่วิถีโค้ง

บทความวิจัย

การสร้างและหาประสิทธิภาพเครื่องยิงถูกต้องแบบกึ่งอัตโนมัติ

THE BUILD AND THE EFFICIENCY OF THE SEMI-AUTOMATIC SEPAK-TAKRAW BALL SHOOTING MECHANISM FOR TRAINING

THE BUILD AND THE EFFICIENCY OF THE SEMI-AUTOMATIC SEPAK-TAKRAW BALL SHOOTING MECHANISM FOR TRAINING

Nantawan Tongpitak¹ Chokchai Traiyasut^{2*}

Faculty of Education, Thailand National Sports University, Sisaket Campus¹

Faculty of Liberal Art and Science, Sisaket Rajaphat University²

*Corresponding author

E-mail address: ts.chokchai@gamil.com

Received: April 11, 2024

Revised: June 21, 2024

Accepted: June 26, 2024

Abstract

This research aimed to build and determine the efficiency of a semi-automatic Sepak-Trakraw ball. Use projectile object motion theory to calculate Takraw ball movement. The electrical design uses an electric motor with a drive capacity of 10 hp, a current of 17 amperes, and a rotor lock current of 50 amperes, no load speed at 1450 rpm, used single-layer belt reducers to drive pulleys according to the 2, 4, 6, 8, 10, and 12-inch sizes used to experiment with the speed of the Takraw ball by setting the Takraw ball traverse time at 1 second.

The results showed that every test shot met the set performance criteria. The fifth test shot had the highest efficiency of 97.60 %, using a 5-inch pulley, a pulley speed of 19.27 meters, and an average Takraw ball traverse distance of 18.81 meters. From testing and determining efficiency, it was found that there is potential for using the semi-automatic Sepak-Trakraw ball for demonstration and training, indoors and outdoors.

Keywords: Sepak-Takraw ball, Efficiency, Projectile

บทความวิจัย

การสร้างและหาประสิทธิภาพเครื่องยิงลูกตะกร้อแบบกึ่งอัตโนมัติ

THE BUILD AND THE EFFICIENCY OF THE SEMI-AUTOMATIC SEPAK-TAKRAW BALL SHOOTING MECHANISM FOR TRAINING

บทนำ

กีฬาเชือกตะกร้อเป็นกีฬาที่สร้างขึ้นเพื่อส่งให้กับประเทศไทยในการแข่งขันทุกระดับ ทั้งอาชีวิน และระดับโลก กีฬาตะกร้อเป็นกีฬาที่เป็นศิลปะการเล่นพื้นบ้านประจับประเทศไทยมาเป็นเวลาช้านานตั้งแต่สมัยกรุงศรีอยุธยา การเล่นจะเล่นเป็นวงบันลานกว้างและมีผู้เล่นหลายคน ไม่จำกัดจำนวน ใช้ลูก hairy ลักษณะกลมเดาะส่งกัน ไปมา บังกีเดะลอดห่วง การเล่นในสมัยนั้นเน้นที่ความสนุกสนานร่าเริงและเพื่อความสามัคคีระหว่างกลุ่มผู้เล่น ล้วนการเล่นแบบข้ามตาข่ายนั้นมีที่มาจากการแข่งขันในประเทศไทย โดยพัฒนาขึ้นมาเพื่อการแข่งขันโดยมีผู้เล่นฝ่ายละ 3 คน ปัจจุบันการแข่งขันตะกร้อในหลายประเทศให้ความสนใจฝึกฝนและพัฒนาเพื่อความสามารถในการแข่งขันในระดับอาชีวิน และอาชีวี ซึ่งกีฬาเชือกตะกร้อได้ถูกบรรจุเข้าแข่งขันครั้งแรกในกีฬาอาชีวินเกมส์ครั้งที่ 11 จัดขึ้นที่ปักกิ่ง สาธารณรัฐประชาชนจีน (Phaobang, Chobthamasakul, Hongsuwan, และ Yamingamleau, 2018)

ปัจจุบันกีฬาเชือกตะกร้อเป็นกีฬาที่ได้บรรจุไว้ในหลักสูตรการเรียนการสอนพลศึกษาหลัก ๆ โรงเรียน เพราะเป็นกีฬาที่มีพื้นฐานเชื่อมโยงกับวิถีชีวิตวัฒนธรรมท้องถิ่นและสังคมไทยสามารถเล่นได้ทั้งชายและหญิง เพื่อให้ผู้เรียนเกิดการเรียนรู้ถึงการดำเนินชีวิตของสังคมไทยและการอนุรักษ์กีฬาไทยให้คงอยู่คู่คนไทยต่อไป กีฬาเชือกตะกร้อเป็นกีฬาที่ได้รับความนิยมและได้รับความสนใจอย่างแพร่หลายในปัจจุบัน และมีแนวโน้มแพร่หลายมากขึ้นในอนาคต ดังจะเห็นได้จาก การส่งเสริมให้มีการเล่นและแข่งขัน ทั้งในส่วนกลางและส่วนภูมิภาค ในระดับนักเรียน นักศึกษา และประชาชนทั่วไป (Jirayukul, 1996) ดังเช่น Kat-thate (1988) ได้กล่าวว่า ว่าตระกร้อเป็นกีฬาศิลปะและวัฒนธรรมดั้งเดิมของไทยมาตั้งแต่โบราณกาล การเล่นตระกร้อเป็นการฝึกให้ผู้เล่นมีอารมณ์สุขุม เยือกเย็น รอบคอบ เพราะการเล่นหรือต่อตะกร้อในแต่ละครั้ง จะต้องอาศัยความตั้งใจและมีสมาธิที่แน่วแน่สามารถรวมจิตใจไปสู่การกระทำอย่างดี ถ้าหากใจร้อน การเล่นหรือต่อตะกร้อในแต่ละครั้งก็จะเสียไป เช่นเดียวกับ Rangsarid (2000) กล่าวว่า การเล่นตระกร้อยังช่วยประสานหน้าที่ของอวัยวะในร่างกายให้มีระบบการทำงานดีขึ้น จะฝึกประสานได้เป็นอย่างดี เพราะการเล่นลูกนั้นแต่ละครั้งต้องอาศัยความสัมพันธ์ระหว่างร่างกาย และกล้ามเนื้อ เช่น ประสานตากับการเคลื่อนไหวของเท้า ทำให้การต่อตะกร้อเล่นลูกนั้นเป็นไปอย่างราบรื่น ดังนั้น การซ้อมจึงเป็นเรื่องสำคัญที่นักกีฬาตระกร้อจำต้องมีการฝึกฝนให้เกิดความชำนาญ ทั้งการเรียนการสอนในระดับประถมศึกษา จนกระทั่งถึงมหาวิทยาลัย จึงเป็นส่วนหนึ่งของการเรียนรู้รื่องของกีฬาตะกร้อให้เกิดความเข้าใจในศิลปะการเล่น กฎกติกา รวมถึงเทคนิคต่าง ๆ เพื่อให้เกิดความชำนาญและเกิดความท้าทายในการแข่งขันทั้งในระดับชาติ และนานาชาติ นอกจากนี้ กีฬาเชือกตะกร้อเป็นกีฬาที่มีการพัฒนาต้นต่าง ๆ เพื่อให้ก้าวสู่สากลอย่างต่อเนื่องและได้รับการผลักดันให้มีการแข่งขันถึงระดับโลก เช่น ในรายการเชือกตะกร้อชิงแชมป์โลก อีสแทฟ เวิลด์คัพ 2011 ณ กรุงกัวลาลัมเปอร์ ประเทศมาเลเซีย ซึ่งถือได้ว่าเป็นรายการระดับโลกรายการแรก ที่เป็นอีกหนึ่งในการผลักดันกีฬาเชือกตะกร้อไปสู่ความเป็นสากลมากขึ้น รวมถึงเปิดโอกาสให้ชาติต่าง ๆ เข้ามาร่วมแข่งขันทั้งในเอเชียและยุโรป จะเห็นว่าประเทศต่าง ๆ มีการพัฒนาการเล่นกีฬาตระกร้อเพื่อการแข่งขันเป็นอย่างมาก (Chumkhotr & Tingsabhat, 2021) และเพื่อเป็นการรักษาวัฒนธรรมไทยและอนุรักษ์กีฬาประจำชาติ

การฝึกซ้อมและเทคนิคการเล่นตระกร้อมีหลายเทคนิคเพื่อให้ผู้เล่นได้ฝึกฝนให้ประสบผลสำเร็จ ผู้เล่นจะต้องมีทักษะพื้นฐานทั้งด้านร่างกายที่สมส่วน สมบูรณ์แข็งแรง พลังกำลังที่จะต้องมีมากพอที่จะยืนระยะให้ได้ในแต่ละเซต การแข่งขัน โดยเฉพาะสมรรถภาพทางกายด้านความคล่องตัวในการเล่นกีฬาเชือกตะกร้อ เพราะความคล่องตัวเป็นองค์ประกอบที่สำคัญเนื่องจากต้องมีความพร้อมที่จะเข้าเล่นในลักษณะต่าง ๆ อยู่ตลอดเวลา และการเคลื่อนไหวก็ต้องทำด้วยเท้าที่มีความรวดเร็วเพื่อให้ทันกับจังหวะของลูก (Noosuwan, 2014) ซึ่งผู้เล่นจะต้องฝึกทักษะพื้นฐานในการเล่นเชือกตะกร้อ ประกอบด้วย การเล่นลูกหลังเท้า ลูกข้างเท้า ลูกเข่าและลูกศรีษะ การเล่นเชือกตะกร้อในยุคแรกยังไม่มีรูปแบบการเล่นมากนัก ส่วนใหญ่จะเป็นการเล่นลูกโดยข้ามตาข่ายศีรษะเป็นส่วนใหญ่ (Pranee, 1996) ในส่วนทักษะที่ใช้มากที่สุดในการเล่นกีฬาตระกร้อและการฝึกซ้อมคือ การเล่นลูกข้างเท้าด้านในหรือที่เรียกว่าลูกแป๊ ผู้เล่นจะต้องทำการฝึกขั้นพื้นฐาน

จากการเล่นลูกนี้ให้เกิดความชำนาญ ในบางกลุ่มผู้ฝึกสอนอาจจากล่าวว่าได้จากการเล่นลูกข้างเท้าด้านในนั้นถือว่าเป็นครุของผู้เล่นตัวร้อยทุกคน (Boonbaan, 2011) หมายความว่าการเตะตั้งลูก พักลูก เดาลูก หรือเตะส่งให้คู่ต่อ ประโยชน์และความสำคัญของทักษะพื้นฐานหลักของกีฬาเซปักตะกร้อ หากพิจารณาให้ละเอียดแล้วลักษณะนี้จะเห็นว่าทักษะการเล่นลูกด้วยข้างเท้าด้านในจะมีประโยชน์มากกว่าลูกหลังเท้าและลูกเข่า เนื่องจากเมื่อเข้าสู่กระบวนการเล่นเกมแล้ว การเล่นลูกด้วยข้างเท้าด้านในจะเป็นทักษะหลักในการใช้ประโยชน์มากที่สุด และรองลงมาจะเป็นการเล่นลูกด้วยศีรษะ (Ministry of Tourism & Sport, 2015)

กติกาในการแข่งขันเซปักตะกร้อแบบข้ามตาข่ายกำหนดโดยสหพันธ์เซปักตะกร้อนานาชาติ ในการแข่งขันจะกำหนดให้มีผู้เล่น 3 คนในสนาม ประกอบไปด้วย ตัวเสิร์ฟ ตัวซัง และตัวทำ โดยนักกีฬาแต่ละตำแหน่งมีหน้าที่ในการเล่นแต่ต่างกันตามองค์ประกอบของการเล่นในแต่ละตำแหน่งที่สำคัญประกอบไปด้วย การโยน การเสิร์ฟ การรับลูก การตั้ง หรือการซองลูก การรุก การสกัดกัน และการรับลูกที่เกิดขึ้นจากการสกัดกันหรือการตั้งรับ (Supalak และ Charoenpanich, 2023) ในระหว่างการแข่งขันการรุกจะมีความรวดเร็วและรุนแรงมาก เนื่องจากเป็นจังหวะของการทำคะแนนให้ได้เปรียบ คู่แข่ง เพื่อจะได้เล่นเกมรุกต่อไป ดังนั้นผู้เล่นจะต้องทำการฝึกให้เกิดทักษะที่ชำนาญสามารถรับลูกที่มีความรุนแรง รวดเร็ว พร้อมทั้งเปิดลูกให้เพื่อนร่วมทีมในตำแหน่งตัวซัง เพื่อส่งต่อให้ตัวทำให้สามารถได้แต้มจากคู่แข่ง การเล่นกีฬาตะกร้อด้วยข้างเท้าด้านใน หรือการเตะ การตั้ง การรับลูกตะกร้อด้วยข้างเท้าด้านในนั้น เป็นการปฏิบัติทักษะที่มีความสำคัญ และมีความจำเป็นที่ผู้เล่นกีฬาตะกร้อทุกคนต้องสามารถปฏิบัติได้ และต้องปฏิบัติจนเกิดความชำนาญ (Kongmeechon, 2016)

จากความสำคัญของการฝึกซ้อมให้เกิดทักษะและความชำนาญของผู้เล่นตัวร้อยจึงมีแนวคิดในการสร้างเครื่องมือในการเปิดลูกตะกร้อแบบกึ่งอัตโนมัติเพื่อใช้ในการฝึกซ้อมกีฬาตะกร้อให้เกิดทักษะการรับและเปิดลูกได้อย่างชำนาญ ด้วยความเร็วและความแรงของเครื่องมือที่สามารถปรับให้สอดคล้องและใกล้เคียงกับการฝึกซ้อมและการแข่งขัน ทั้งยังจะช่วยลดการใช้ผู้ช่วยในการฝึกซ้อม โดยหนึ่งเครื่องจะสามารถใช้ฝึกซ้อมนักกีฬาได้คราวละหลาย ๆ คน ผู้ฝึกสอน เกิดความสะดวกในการสังเกตทักษะผู้ฝึกซ้อม มีเวลาในการควบคุมการฝึกซ้อมและแก้ไขข้อบกพร่องต่าง ๆ ที่เกิดขึ้น ระหว่างการซ้อมทำให้ผู้ฝึกสามารถแก้ไขและปรับเปลี่ยนทักษะได้หลากหลายจุดเกิดเป็นความชำนาญ ดังนั้น ผู้วิจัยจึงมีแนวคิดในการสร้าง และทดสอบหาประสิทธิภาพเครื่องยิงลูกตะกร้อแบบกึ่งอัตโนมัติ

วัตถุประสงค์

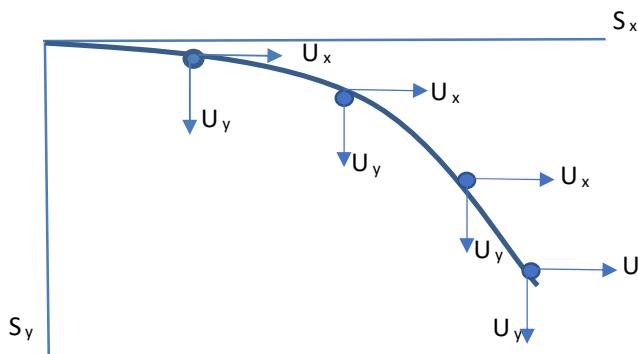
- เพื่อสร้างเครื่องยิงลูกตะกร้อแบบกึ่งอัตโนมัติ
- เพื่อทดสอบประสิทธิภาพของเครื่องยิงลูกตะกร้อแบบกึ่งอัตโนมัติ

วิธีดำเนินการวิจัย

การวิจัยในครั้งนี้ได้ทำการสร้าง และหาประสิทธิภาพเครื่องยิงลูกตะกร้อแบบกึ่งอัตโนมัติ โดยมีขั้นตอนดังต่อไปนี้
การสร้างเครื่องยิงลูกตะกร้อ

ขั้นตอนที่ 1 การยิงลูกตะกร้อจากเครื่องยิง ได้ทำการคำนวณจากทฤษฎีการเคลื่อนที่ของวัตถุในแนวโน้มแบบ projectile (Projectile) (Alcazar, Cajipe, & Tolentino, 2018) โดยการคำนวณระยะในแนวราบของการยิงลูกตะกร้อ ซึ่งในการคำนวณกรณีของการขวางวัตถุขึ้นไปในอากาศด้วยความเร็วตันเท่ากับ c และทำมุม θ ได้ θ กับแนวราบเราจะพิจารณาโดยถือว่าไม่มีแรงม้ากระทำต่อวัตถุในแนวราบ จึงพิจารณาการเคลื่อนที่นี้ เช่นเดียวกับการเคลื่อนที่ของวัตถุด้วยความเร็วคงที่ และใช้สมการคำนวณ ดังสมการที่ (1)

บทความวิจัย

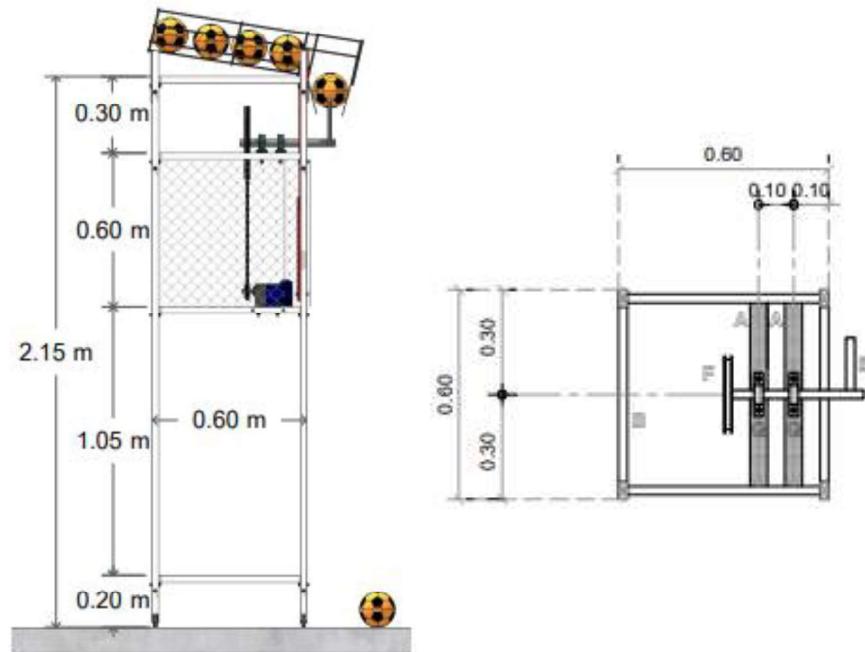

การสร้างและหาประสิทธิภาพเครื่องยิงลูกตะกร้อแบบกึ่งอัตโนมัติ

THE BUILD AND THE EFFICIENCY OF THE SEMI-AUTOMATIC SEPAK-TAKRAW BALL SHOOTING MECHANISM FOR TRAINING

$$S = v x t \quad (1)$$

เมื่อ S คือ ระยะทาง v คือ ความเร็ว t คือ เวลา

การวิเคราะห์การเคลื่อนที่ของลูกตะกร้อขณะยิงออกจากเครื่องยิงโดยใช้ผังวัตถุอิสระของการเคลื่อนที่ในแนวตั้ง การเปรียบเทียบระยะทางในแนวตั้งของลูกตะกร้อที่มีการเคลื่อนที่ในแนวตั้งอย่างอิสระด้วยความเร็วต้นเท่ากับศูนย์ กับ ลูกตะกร้อที่มีการเคลื่อนที่แบบໂพรเจกไทล์ที่มีความเร็วต้นอยู่ในแนวระดับ ทำให้ความเร็วต้นในแนวตั้งของลูกตะกร้อมีค่า เป็นศูนย์ โดยลูกตะกร้อเริ่มต้นเคลื่อนที่ เมื่อเวลาผ่านไป ระยะทางในแนวตั้งของลูกตะกร้อทั้งในแนวตั้งและแนวราบเท่ากัน ทั้งนี้การเคลื่อนที่ของลูกตะกร้อในแนวตั้ง และการเคลื่อนแบบໂพรเจกไทล์ต่างก็เป็นการเคลื่อนที่ภายใต้แรงโน้มถ่วงของ โลก ดังในภาพที่ 1 จากการกำหนดมุม และความเร็วของลูกตะกร้อตามทฤษฎีการเคลื่อนที่แบบໂพรเจกไทล์จะพบว่า สำหรับอัตราเร็วต้นค่าหนึ่ง ๆ ระยะทางในแนวราบของวัตถุมีค่าขึ้นกับ $\sin 2\theta$ ถ้าทิศทางของความเร็วต้นทำมุม 45° กับ แนวราบจะได้การเคลื่อนที่แบบໂพรเจกไทล์ที่มีระยะทางในแนวราบมากที่สุด ในทางกลับกัน ถ้าต้องการให้ลูกตะกร้อ เคลื่อนที่แบบໂพรเจกไทล์ และให้ระยะทางในแนวราบของวัตถุมีค่าหนึ่ง ความเร็วต้นที่น้อยที่สุดที่ใช้ในการยิงลูกตะกร้อจะ เกิดขึ้นเมื่อทิศทางของความเร็วต้นทำมุม 45° กับแนวราบ ซึ่งผังการเคลื่อนที่ของลูกตะกร้อตามทฤษฎีการเคลื่อนที่แบบ ໂพรเจกไทล์ แสดงได้ดังภาพที่ 1


ภาพที่ 1 ผังการเคลื่อนที่ในรูปแบบໂพรเจกไทล์ของลูกตะกร้อในแนวราบและแนวตั้ง

ขั้นตอนที่ 2 หลังจากการกำหนดรูปแบบการเคลื่อนที่ของลูกตะกร้อตามทฤษฎีໂพรเจกไทล์แล้ว ขั้นตอนต่อมาคือ การออกแบบสถาปัตยกรรม โดยใช้ทั้งแผนภาพการออกแบบ 2 มิติ และการสร้างโมเดล 3 มิติ เพื่อให้สามารถเห็นภาพทาง สถาปัตยกรรมและโครงสร้างของเครื่องยิงลูกตะกร้อที่สมมุติ สำหรับการออกแบบทางสถาปัตยกรรมโดย การเปรียบเทียบกับโมเดลมนุษย์ (Human scale) ซึ่งเป็นหลักการสำคัญในการออกแบบทางสถาปัตยกรรม และเพื่อให้ เครื่องยิงตะกร้อที่ออกแบบสามารถใช้ฝีกซ้อมได้จริงกับนักกีฬาตะกร้อโดยเฉพาะนักกีฬาตะกร้อคนไทย ซึ่งการออกแบบ ทางด้านสถาปัตยกรรมสามารถแสดงได้ดังภาพที่ 2

ภาพที่ 2 การออกแบบทางด้านสถาปัตยกรรมของเครื่องยิงลูกตะกร้อ

ขั้นตอนที่ 3 การออกแบบโครงสร้างของเครื่องยิงลูกตะกร้อในครั้งนี้ใช้โครงสร้างวัสดุที่เป็นเหล็กโดยเน้นความมั่นคงและแข็งแรง การออกแบบสามารถให้ถอดประกอบได้โดยการใช้น็อตในการเชื่อมแน่นชั้นส่วนโครงสร้างที่ง่ายในการถอดประกอบและเคลื่อนย้าย เพื่ออำนวยความสะดวกในการฝึกซ้อมในสนาม และการเปลี่ยนสถานที่ใช้งาน โดยมิติของโครงสร้างและวัสดุที่ใช้แสดงดังภาพที่ 3

ภาพที่ 3 การออกแบบทางด้านโครงสร้างและ มิติของเครื่องยิงลูกตะกร้อ

บทความวิจัย

การสร้างและหาประสิทธิภาพเครื่องยิงลูกตะกร้อแบบบ่อก่อต้นมอเตอร์

THE BUILD AND THE EFFICIENCY OF THE SEMI-AUTOMATIC SEPAK-TAKRAW BALL SHOOTING MECHANISM FOR TRAINING

ขั้นตอนที่ 4 การออกแบบระบบเครื่องยิงลูกตะกร้อ การออกแบบอ้างอิงมาตรฐานระบบไฟฟ้าของวิศวกรรมสถานแห่งประเทศไทย (วสท.) การคำนวณหาค่าพารามิเตอร์ต่าง ๆ ตามมาตรฐานการติดตั้งและการเชื่อมต่อระบบไฟฟ้า สำหรับประเทศไทย (The Engineering Institute of Thailand Under H.M. The King's Patronage, 2001) พร้อมกันนี้ การออกแบบระบบไฟฟ้าสำหรับเครื่องยิงลูกตะกร้ออย่างออกแบบมาตรฐานการติดตั้งและการเชื่อมต่อระบบไฟฟ้า (Bosela, 2003) และการกำหนดโหลดไฟฟ้าให้มอเตอร์ไฟฟ้ามีกำลังมอเตอร์มีขนาด 10 แรงม้า กระแส 17 แอมป์ร์ กระแสล็อกโรเตอร์ 50 แอมป์ร์ การออกแบบคำนวณหาค่ากระแสของสายไฟฟ้าสำหรับมอเตอร์ต่อลดตัว $I_{C,M1\dots M3}$ และขนาดกระแสของสายป้อน I_C โดยใช้โปรแกรม PDES-M (Kham-klieang & Kongroung, 2014) การออกแบบระบบเพื่อง และความเร็วรอบในการหมุนของมู่เล่ย์ที่ใช้ในการยิงลูกตะกร้อ โดยการทดสอบความเร็วจากมอเตอร์ไฟฟ้าที่ได้ทำการออกแบบไว้ และให้สมพันธ์กับจังหวะของการยิงลูกตะกร้อโดยการควบคุมกระแสไฟ และปรับเปลี่ยนแรงดันกระแสเพื่อขับมอเตอร์ไฟฟ้าโดยใช้รีเลย์ ซึ่งเป็นสวิตซ์ที่ทำงานเปิดปิดวงจรคล้ายกับสวิตซ์ปักกิจซึ่งใช้สปริงหน้าคอนแทคจะเกิดกระแสเพียงเล็กน้อยเป็นมิลลิแอมป์โดยจะทำงานเพื่อตึงหน้าคอนแทคให้เปิดหรือปิดวงจร (Nate-Sanga, 2007) โดยที่ข้อดีของรีเลย์คือการเปิดหน้าคอนแทคที่มีความรวดเร็วเนื่องจากแรงดึงของคอยล์โดยอำนาจกระแสเหล็กจะทำให้ลดประกายไฟที่หน้าคอนแทค (Patarajarakul & Haruanchep, 1994) ซึ่งระบบกลไกระหว่างมอเตอร์ไฟฟ้า สายพาน คันโยกบังคับ และมู่เล่ย์ แสดงรายละเอียดได้ดังภาพที่ 4

ภาพที่ 4 การออกแบบระบบของเครื่องยิงลูกตะกร้อ

การออกแบบอัตราส่วนทดสอบความเร็วรอบของมู่เล่ย์ขับต่อความเร็วรอบของมู่เล่ย์ตาม หรือที่เรียกว่า i ในการวิจัย (ภาพที่ 4) มีการทดสอบอัตราส่งจากเพลาขับของมู่เล่ย์เพียงชั้นเดียวเพื่อทำการหาความเร็วและความแรงของลูกตะกร้อที่ยิงออกจากเครื่องยิงให้มีความใกล้เคียงกับการเปิดลูกตะกร้อจากนักกีฬาตะกร้อ เนื่องจากกำลังขับของมอเตอร์ไฟฟ้านั้นขึ้นอยู่กับความเร็วรอบในการหมุน ซึ่งต้องมีการคำนวณและทำการทดลองจริงให้เกิดความเหมาะสม โดยมีสูตรการคำนวณดังนี้ (Katemak & Surin, 2012)

อัตราทดสายพานชั้นเดียว

$$i = \frac{d_2}{d_1} \quad (2)$$

เมื่อ i คือ อัตราทดสายพานชั้นเดียว d_1 คือ เส้นผ่าศูนย์กลางของมู่เล่ย์ขับ d_2 คือ เส้นผ่าศูนย์กลางของมู่เล่ย์ตาม

การทดสอบ และวัดประสิทธิภาพ

จากการสร้างเครื่องยิงตะกร้อแล้ว หลังจากนั้นทำการทดสอบวัดประสิทธิภาพของเครื่องยิงตะกร้อ แบบแผนการทดลองโดยการปรับขนาดมุ่งเลี้ยวตามและคำนวณความเร็วรอบของมุ่งเลี้ยวตาม โดยที่ความเร็วเครื่องยิงจะเท่ากับความเร็วรอบของมุ่งเลี้ยวตาม และเปรียบเทียบระหว่างการเคลื่อนที่ในแนวแกน X (S_x) ระหว่างการคำนวณจากทฤษฎีเพรเจกไทล์กับระยะที่เครื่องยิงลูกตะกร้อยิงได้จริง โดยกำหนดค่าความคลาดเคลื่อน (ประสิทธิภาพ) ที่ยอมรับได้ไม่เกิน ร้อยละ 5 โดยที่การคำนวณอัตราการทดสอบสายพานขั้นเดียวระหว่างมุ่งเลี้ยวขั้น และมุ่งเลี้ยวตาม คำนวณดังสมการที่ (2) และการคำนวณความเร็วรอบในการหมุนของมุ่งเลี้ยวตามเพื่อไปหมุนแกนเพลาเหล็กเพื่อยิงลูกตะกร้อคำนวณได้ดังสมการที่ (3) (Ponsri & Nattawut, 2023)

$$V = \frac{\pi d n}{1000 x 60} \quad (3)$$

เมื่อ V คือ ความเร็วของมุ่งเลี้ยวตาม (เมตรต่อวินาที)

π คือ ค่าคงที่ มีค่า 3.14

d คือ เส้นผ่าศูนย์กลางของมุ่งเลี้ยว (มม.)

n ความเร็วของมอเตอร์ 1450 (รอบต่อนาที)

การทดสอบความเร็วรอบสำหรับการวิจัยในครั้งนี้ อัตราการทดสอบว่าจะมุ่งเลี้ยวขั้นและมุ่งเลี้ยวตามจะผันแปรตามขนาดของมุ่งเลี้ยงทั้งสอง ทั้งยังส่งผลต่อความเร็วรอบของเครื่องยิงลูกตะกร้อในการวิจัย เพื่อทดสอบประสิทธิภาพที่เหมาะสมและใกล้เคียงกับการเปิดลูกตะกร้อโดยแผนแบบการทดลองแสดงดังตารางที่ 1

ตารางที่ 1 แผนแบบการทดสอบประสิทธิภาพของเครื่องยิงตะกร้อ

ลำดับชุดการทดสอบ	ความเร็วรอบของมอเตอร์ (รอบต่อนาที)	มุ่งเลี้ยวตาม (นิ้ว)	ความเร็วรอบมุ่งเลี้ยว (เมตรต่อวินาที)	เวลาที่ใช้ในการทดลอง (วินาที)	ระยะทางจากการคำนวณ (เมตร)
1	1450	2	3.85	1	3.85
2	1450	4	7.71	1	7.71
3	1450	6	11.56	1	11.56
4	1450	8	15.42	1	15.42
5	1450	10	19.27	1	19.27
6	1450	12	23.13	1	23.13

บทความวิจัย

การสร้างและหาประสิทธิภาพเครื่องยิงลูกตะกร้อแบบกึ่งอัตโนมัติ

THE BUILD AND THE EFFICIENCY OF THE SEMI-AUTOMATIC SEPAK-TAKRAW BALL SHOOTING MECHANISM FOR TRAINING

ผลการวิจัย

เครื่องยิงลูกตะกร้อแบบกึ่งอัตโนมัติที่ได้ทำการสร้างขึ้นในครั้งนี้ทำการทดลองยิงลูกตะกร้อจากเครื่องยิงที่ได้สร้างขึ้น โดยปรับเปลี่ยนมุ่ลย์ตามขนาดที่แสดงในตารางที่ 1 สถานที่ทดสอบคือลานกีฬาในบริเวณมหาวิทยาลัยการกีฬาแห่งชาติ วิทยาเขตศรีสะเกษ ทำการเบรียบเทียบกับระยะที่คำนวณได้กับระยะจริงที่เครื่องยิงลูกตะกร้อขึ้นได้พร้อมทั้งดูความเหมาะสมของความเร็วและระยะทางของลูกตะกร้อ ผลจากการทดลองแสดงค่าดังตารางที่ 2

ตารางที่ 2 ผลการทดสอบประสิทธิภาพของเครื่องยิงลูกตะกร้อแบบกึ่งอัตโนมัติ

ลำดับชุดการทดสอบ	ระยะทางจากการคำนวณ (เมตร)	**ระยะทางลูกตะกร้อจากเครื่องยิง (เมตร)	เฉลี่ย (เมตร)	ส่วนเบี่ยงเบนมาตรฐานค่าเฉลี่ย	ร้อยละประสิทธิภาพ
		3.44			
1	3.85	3.87	3.67	0.18	95.11
		3.69			
		7.32			
2	7.71	7.65	7.47	0.14	96.89
		7.44			
		11.35			
3	11.56	10.98	11.26	0.21	97.39
		11.46			
		14.39			
4	15.42	15.21	14.82	0.34	96.15
		14.88			
		18.44			
5	19.27	19.11	18.81	0.28	97.60
		18.89			
		22.34			
6	23.13	23.42	22.29	0.94	96.38
		21.12			

**ยิงทดสอบจำนวน 3 ครั้งต่อ 1 ชุดการทดสอบ

ผลการทดสอบเครื่องยิงลูกตะกร้อแบบกึ่งอัตโนมัติโดยการยิงทดสอบจากแผนแบบการทดลอง จากการคำนวณระยะทางที่ลูกตะกร้อเคลื่อนที่ได้เบรียบเทียบกับระยะยิงลูกตะกร้อจากเครื่องยิงแบบกึ่งอัตโนมัติที่ได้สร้างขึ้นในการทำวิจัยในครั้งนี้ โดยทำการปรับเปลี่ยนขนาดของมุ่ลย์เพื่อทดสอบหาระยะยิงโดยกำหนดเวลาในการเคลื่อนที่ของลูกตะกร้อที่ออกจากเครื่องยิงที่ 1 วินาที แล้วทำการวัดระยะและคำนวณประสิทธิภาพของเครื่องยิงลูกตะกร้อ จากข้อมูลการทดสอบทั้ง 6 ชุด ซึ่งในแต่ละชุดการทดสอบจะทำการทดสอบจำนวน 3 ครั้งเพื่อหาค่าเฉลี่ย และส่วนเบี่ยงเบนมาตรฐานค่าเฉลี่ยระยะทาง แล้วนำมาหาค่าประสิทธิภาพของเครื่องยิงลูกตะกร้อ ดังแสดงในตารางที่ 2 ผลการทดสอบ พบว่า การทดสอบชุด

ที่ 1 ใช้มุ่ลย์ตามขนาด 2 นิ้ว ความเร็วรอบ 3.85 เมตรต่อวินาที ได้ระยะทางการเคลื่อนที่ของลูกตะกร้อเฉลี่ย 3.67 เมตร ส่วนเบี่ยงเบนมาตรฐานค่าเฉลี่ยระยะทางเท่ากับ 0.18 มีประสิทธิภาพการยิงร้อยละ 95.11 การทดสอบชุดที่ 2 ใช้มุ่ลย์ตามขนาด 4 นิ้ว ความเร็วรอบ 7.11 เมตรต่อวินาที ได้ระยะทางการเคลื่อนที่ของลูกตะกร้อเฉลี่ย 7.47 เมตร ส่วนเบี่ยงเบนมาตรฐานค่าเฉลี่ยระยะทางเท่ากับ 0.14 มีประสิทธิภาพการยิงร้อยละ 96.89 การทดสอบชุดที่ 3 ใช้มุ่ลย์ตามขนาด 6 นิ้ว ความเร็วรอบ 11.56 เมตรต่อวินาที ได้ระยะทางการเคลื่อนที่ของลูกตะกร้อเฉลี่ย 11.26 เมตร ส่วนเบี่ยงเบนมาตรฐานค่าเฉลี่ยระยะทางเท่ากับ 0.21 มีประสิทธิภาพการยิงร้อยละ 97.39 การทดสอบชุดที่ 4 ใช้มุ่ลย์ตามขนาด 8 นิ้ว ความเร็วรอบ 15.42 เมตรต่อวินาที ได้ระยะทางการเคลื่อนที่ของลูกตะกร้อเฉลี่ย 14.82 เมตร ส่วนเบี่ยงเบนมาตรฐานค่าเฉลี่ยระยะทางเท่ากับ 0.34 มีประสิทธิภาพการยิงร้อยละ 96.15 การทดสอบชุดที่ 5 ใช้มุ่ลย์ตามขนาด 10 นิ้ว ความเร็วรอบ 19.27 เมตรต่อวินาที ได้ระยะทางการเคลื่อนที่ของลูกตะกร้อเฉลี่ย 18.81 เมตร ส่วนเบี่ยงเบนมาตรฐานค่าเฉลี่ยระยะทางเท่ากับ 0.28 มีประสิทธิภาพการยิงร้อยละ 97.6 การทดสอบชุดที่ 6 ใช้มุ่ลย์ตามขนาด 12 นิ้ว ความเร็วรอบ 23.13 เมตรต่อวินาที ได้ระยะทางการเคลื่อนที่ของลูกตะกร้อเฉลี่ย 14.82 เมตร ส่วนเบี่ยงเบนมาตรฐานค่าเฉลี่ยระยะทางเท่ากับ 0.94 มีประสิทธิภาพการยิงร้อยละ 96.15 ตามลำดับ

เมื่อพิจารณาค่าประสิทธิภาพของเครื่องยิงลูกตะกร้อจากการยิงทั้ง 6 ชุดการทดสอบ พบว่า การยิงทดสอบชุดที่ 5 มีค่าประสิทธิภาพสูงสุดที่ร้อยละ 97.60 โดยที่ใช้มุ่ลย์ตามขนาด 5 นิ้ว ความเร็วรอบมุ่ลย์ตาม 19.27 เมตร ระยะการเคลื่อนที่ของลูกตะกร้อเฉลี่ย 18.81 เมตร ส่วนเบี่ยงเบนมาตรฐานค่าเฉลี่ยระยะทางเท่ากับ 0.28 ดังนั้น เครื่องยิงลูกตะกร้อที่ได้สร้างขึ้นในครั้งนี้จึงสามารถนำไปประยุกต์ใช้ได้ตามความเหมาะสมในการฝึกซ้อมนักกีฬาตะกร้อ เนื่องจากอุปกรณ์และกลไกที่ใช้วิจัยและทดสอบตามตารางที่ 2 สามารถผ่านเกณฑ์ประสิทธิภาพที่ได้ตั้งไว้ทุกชุดการทดสอบ

ตารางที่ 3 ผลการเปรียบเทียบระยะทางจากการคำนวณกับระยะทางลูกตะกร้อจากเครื่องยิง

ตัวแปร	<i>n</i>	\bar{x}	<i>s.d.</i>	<i>t-value</i>	<i>df</i>	<i>P-value</i>
ระยะทางจากการคำนวณ	6	13.49	7.21			
ระยะทางลูกตะกร้อจากเครื่องยิง	6	13.05	6.99	0.11	10	0.92

จากตารางที่ 3 พบว่า ระยะทางจากการคำนวณกับระยะทางลูกตะกร้อจากเครื่องยิงไม่แตกต่างกันที่ระดับนัยสำคัญทางสถิติ .05 แสดงว่า เครื่องยิงลูกตะกร้อที่สร้างขึ้นมีระยะทางในการยิงเป็นไปตามหลักการของระยะทางในการยิงจากการคำนวณจากทฤษฎีการเคลื่อนที่แบบໂປຣເຈກໄກລ໌

สรุปผลและอภิปรายผล

การสร้างและหาประสิทธิภาพเครื่องยิงลูกตะกร้อแบบกึ่งอัตโนมัติในการวิจัยในครั้งนี้ สามารถสรุปได้ดังนี้

- การสร้างเครื่องยิงลูกตะกร้อแบบกึ่งอัตโนมัติโดยให้เครื่องยิงลูกตะกร้อให้เคลื่อนที่ตามแบบໂປຣເຈກໄກລ໌ซึ่งมีลักษณะคล้ายกับการเปิดลูกตะกร้อจากนักกีฬา และใช้หลักการทดสอบจากมุ่ลย์ขับและมุ่ลย์ตาม เพื่อทดสอบความเร็วจากมอเตอร์ไฟฟ้า การใช้สุดสุดเหล็กกล่องมีน้ำหนักเบาสามารถทดสอบประกอบและเคลื่อนย้ายได้ตามความเหมาะสมของพื้นที่ฝึกซ้อม ระบบไฟฟ้าใช้มอเตอร์ขนาดขับ 10 แรงม้า กระแส 17 แอมป์ กระแส ลือกໂຕ 50 แอมป์ ความเร็วรอบที่ 1450 รอบต่อนาที ซึ่งเป็นอุปกรณ์มาตรฐานที่มีข่ายในห้องทดลองทั่วไป ผู้ที่นำต้นแบบไปใช้งานสามารถปรับเปลี่ยนได้ตามความเหมาะสม จากการวิจัยที่ได้ทำการศึกษาเปรียบเทียบระยะทางการยิงลูกตะกร้อจากเครื่องยิงกับระยะที่คำนวณจากทฤษฎีการเคลื่อนที่แบบໂປຣເຈກໄກລ໌ โดยใช้สุดสุดอุปกรณ์ที่จัดทำง่ายและต้นทุนไม่สูงมาก มีน้ำหนักเบา สามารถทดสอบประกอบและเคลื่อนย้ายได้ง่าย สะดวก สามารถนำไปใช้ฝึกซ้อมได้ในหลากหลายสถานที่ทั่วไปร่วมและกลางแจ้ง ซึ่ง

บทความวิจัย

การสร้างและหาประสิทธิภาพเครื่องยิงลูกตะกร้อแบบบีบีก็อตโนมัติ

THE BUILD AND THE EFFICIENCY OF THE SEMI-AUTOMATIC SEPAK-TAKRAW BALL SHOOTING MECHANISM FOR TRAINING

สอดคล้องกับงานวิจัยของ Thongkup et.al. (2013) ที่กล่าวว่าการสร้างเครื่องมือต่าง ๆ ควรทำได้ง่ายและสะดวกต่อการใช้งาน นอกจากนี้การสร้างเครื่องยิงตะกร้อแบบบีบีก็อตโนมัติ ยังต้องคำนึงถึงประโยชน์ต่อการใช้งาน และมีความปลอดภัย สะดวกต่อการซ้อม เช่นและบำรุงรักษา (Thongkup et.al., 2020)

2. การหาประสิทธิภาพของเครื่องยิงตะกร้อแบบบีบีก็อตโนมัติในส่วนของการทดสอบทุกชุดการทดสอบสามารถผ่านเกณฑ์ความคลาดเคลื่อนของประสิทธิภาพที่ร้อยละ 5 การทดสอบที่มีค่าประสิทธิภาพสูงสุดที่ร้อยละ 97.60 โดยใช้มู่เลย์ตามขนาด 5 นิ้ว ความเร็วของมู่เลย์ตาม 19.27 เมตร ระยะการเคลื่อนที่ของลูกตะกร้อเฉลี่ย 18.81 เมตร ส่วนเบี่ยงเบนมาตรฐานค่าเฉลี่ยระยะทางเท่ากับ 0.28 ซึ่งจากการวิจัยจะมุ่งเน้นไปที่การเปิดลูกตะกร้อเนื่องจากเป็นพื้นฐานสำคัญของ การฝึกซ้อมตะกร้อ ซึ่งสอดคล้องกับ Pakulanon & Kunta (2015) ซึ่งกล่าวว่าการฝึกเพื่อพัฒนาความแม่นยำและความชำนาญประกอบด้วยการฝึกสมรรถภาพทางด้านร่างกาย และทักษะการเปิดลูก ทั้งนี้ในการเปรียบเทียบระยะทางจากทุกชุด และลูกตะกร้อจากเครื่องยิงไม้แตกต่างกันที่รั้ดับนัยสำคัญทางสถิติ .05 ดังนั้น เครื่องยิงลูกตะกร้อที่สร้างขึ้นมีระยะทางในการยิงเป็นไปตามหลักการของระยะทางในการยิงจากการคำนวณจากทฤษฎีการเคลื่อนที่แบบโพรเจคไทล์

ข้อเสนอแนะ

ข้อเสนอแนะในการทำวิจัยในครั้งต่อไปมีดังนี้

1. ควรเพิ่มเติมอุปกรณ์ในระบบอัตโนมัติเพิ่มขึ้นเพื่อให้เครื่องยิงลูกตะกร้อสามารถทำงานได้ในระบบอัตโนมัติเต็มรูปแบบ เช่น ระบบปริมาณความจุจังหวะการหมุน ความแรงของลูกตะกร้อที่ยิงออกจากเครื่อง เป็นต้น
2. ควรออกแบบระบบไฟฟ้าสำหรับใช้กับมอเตอร์ร่วมกับระบบแบตเตอรี่ร่วมกับการเก็บพลังงานในรูปแบบเดอรี่ เข้ามาช่วยเสริมกำลังไฟฟ้าให้กับมอเตอร์ไฟฟ้าในการนี้การใช้เครื่องยิงตะกร้อสำหรับฝึกซ้อมทั้งในที่ร่มและกลางแจ้ง
3. การเลือกใช้วัสดุควรพิจารณาให้หนักของวัสดุที่เบามากขึ้นเพื่อความสะดวกในการขยับและการจัดเก็บ แต่ต้องคำนึงถึงเสียงรบกวนและความมั่นคงแข็งแรงของโครงสร้างเพื่อความปลอดภัยในการใช้งาน
4. ควรทำการทดสอบหาประสิทธิภาพและควรทดสอบในหลากหลายรูปแบบ เช่น การปรับมุมองศาในการยิงลูกตะกร้อ พร้อมทั้งทดสอบความแม่นยำ ความเร็ว ความแรง ของลูกตะกร้อ เปรียบเทียบกับการเปิดลูกตะกร้อจากนักกีฬาจริง

กิจกรรมประจำ

การสร้างและหาประสิทธิภาพเครื่องยิงตะกร้อแบบกึ่งอัตโนมัติในครั้งนี้ได้รับการคัดเลือกให้เป็นตัวแทนนวัตกรรมทางการกีฬาของมหาวิทยาลัยการกีฬาแห่งชาติ ในการเข้าร่วมการสาขิตการใช้ประโยชน์นวัตกรรมจากการวิจัยในงาน “มหกรรมงานวิจัยแห่งชาติ 2566” (Thailand Research Expo 2023) ซึ่งจัดขึ้นระหว่างวันที่ 7 - 11 สิงหาคม 2566 ณ โรงแรมเช็นทาราแกรนด์บีงกอกคอนเวนชันเซ็นเตอร์ เช็นทาร์เวลล์ กรุงเทพฯ ดังแสดงในภาพที่ 5

ภาพที่ 5 สาขิตการใช้งานในงาน มหกรรมวิจัยแห่งชาติ 2566

เอกสารอ้างอิง

Alcazar, R. S., Cajipe, J., & Tolentino, C. (2018). Electro-Pneumatic Sepak Trakraw Ball Pitching Device. *International Journal of Trend in Scientific Research and Development*, 1015-1027.

Boonbaan, S. (2011). Basic Training of Sepak Trakraw. Bangkok: Odient Store.

Bosela, T. R. (2003). Electrical Systems Design. Hoboken, New Jersey, U.S.: Prentice Hall.

Chumkhotr, K., & Tingsabhat, S. (2021). Effects of Sepak Takraw based on Neo-Humanist Approach . An Online Journal of Education, 1-11.

Jirayukul, C. (1996). Effect of Sepaktrakraw Training on Chemical of Thailand Athlete. Bangkok: Thesis Chulalongkorn University.

Katemak, V., & Surin, P. (2012). Design and Development of Lac Cracking Machine. *Journal of Engineering Kasem Bundit University*, 63-76.

Kat-thate, B. (1988). The Art of Sepaktrakraw. Bangkok: Odiantstore.

Kham-kliang, S., & Kongrung, P. (2014). Design of Electrical System on Motor Load for Thai Electrical Code 2013 by using MATLAB GUIs. Nontaburi: King's Mong Kutt of North Bangkok.

Kongmeechon, C. (2016). Effect of Nine square Training Program on agility of Sepaktakraw Athletes Rajhaphat Nakornprathom University. Suphanburi District: Thesis of Institute of Sport Education.

Ministry of Tourism & Sport. (2015). The Manual and Basic Training of Sepak Trakraw for Coaching. Bangkok: Ministry of Tourism & Sport.

บทความวิจัย

การสร้างและหาประสิทธิภาพเครื่องยิงลูกตะกร้อแบบบก้าวต่อเนื่อง

THE BUILD AND THE EFFICIENCY OF THE SEMI-AUTOMATIC SEPAK-TAKRAW BALL SHOOTING MECHANISM FOR TRAINING

Nate-Sanga, W. (2007). The Design and Development of Young Rice Planting Machine for Use In The North Eastern Part of Thailand. RMUTP Research Journal, 159-169.

Noosuwan, T. (2014). Effect of Nine square Training Program on agility of Male Sepaktakraw Athletes. Wicha Journal, 34-45.

Pakulanon, S., & Kunta, N. (2015). Effect of Music-Based Imagery in Combination with Serving Skill Training on the Accuracy of Serving in Sepak Trakraw Athletes of Mae Fah Luang University. Journal of Sport Science and Technology, 223-230.

Patarajarakul, B., & Haruanchep, P. (1994). Theory and Practice of Car Electric System. Bangkok: SE-ED .

Phaobang, M., Chobthamasakul, C., Hongsuwan, C., & Yamngamleau, W. (2018). The Desirable Competency of Sepak takraw Referee According to the Opinions of Team Managers and Players in Thailand National Games 45th "Shongkha Games". Academic Journal Institute of Physical Education, 73-87.

Ponsri, S., & Nattawut, P. (2023). Build a Belt in Grinding and Finishing Work. Science ant Technology Journal of Sisaket Rajabhat University, 1-11.

Pranee, S. (1996). Basic Training Sepak Trakraw . Bangkok: Odient Store.

Rangsarid, B. (2000). Sepak trakraw and Takraw through the loop. Bangkok: Skybook.

Supalak, R., & Charoenpanich, N. (2023). A Comparison of Vertical Ground Reaction Force and Knee Joint Motion During Landing Between Half-Roll and Sunback Spikes in Female Sepak Takraw Player. Journal of Sports Science and Health, 67-77.

The Engineering Institute of Thailand Under H.M. The King's Patronage. (2001). Standard Electric Installation for Thailand (EIT Standard 2001-56). Bangkok: Global Graphic.

Thongkup, W., Phomkeaw, K., Sarapap, S., & Wanriko, A. (2020). Construction and Efficiency of Aluminum Cans Shredder Machine. Prince of Narathiwat University Journal, 124-136.

Thongkupt, V., Apichatbunlue, A., & Sukeswade, B. (2013). Construction of Simple Vibration Experiment Package. RMUTP Research Journal, 24-34.