การประยุกต์ใช้พอลิอีเทอร์อีเทอร์คีโตนในงานทันตกรรมประดิษฐ์

ผู้แต่ง

  • ไปรยา เศรษฐะทัตต์ แผนกทันตกรรม โรงพยาบาลส่งเสริมสุขภาพ ศูนย์อนามัยที่ 2 พิษณุโลก

คำสำคัญ:

Polyetheretherketone, PEEK, Removable partial denture, Fixed partial denture, Implant

บทคัดย่อ

The current trend is moving towards using metal-free restorations and biomaterials that exhibit advanced properties in the complex oral environment. Due to its excellent properties, such as stable chemical properties and biocompatibility, Polyetheretherketone (PEEK) has several applications in dentistry. The study aimed to summarize the experimental and clinical studies conducted about PEEK materials for applications in prosthodontics. Numerous studies have proven that PEEK can be successfully used in prosthodontics. PEEK could be considered a viable alternative material for removable partial dentures, fixed partial dentures, dental implants, and the restoration of maxillofacial defects. However, clinical studies are currently lacking, and further in-vitro and in-vivo studies are still needed to evaluate PEEK as a permanent material.

References

Adem, N., Bal, B., & Kazazoğlu, E. (2022). Comparative study of chemical and mechanical surface treatment effects on the shear bond strength of polyether-ether-ketone to veneering resin. International Journal of Prosthodontics, 35(2), 201–207. https://doi.org/10.11607/ijp.6938

Ali, Z., Baker, S., Sereno, N., & Martin, N. (2020). A pilot randomized controlled crossover trial comparing early ohrqol outcomes of cobalt-chromium versus peek removable partial denture frameworks. International Journal of Prosthodontics, 33(4), 386-392. https://doi.org/10.11607/ijp.6604

Alqahtani, W. M. (2019). Selection of fixed dental prosthesis materials based on a finite element study. International Journal of Medical Dentistry, 23(4), 547-552. https://chula.idm.oclc.org/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=ddh&AN=141301328&site=eds-live

Badran, A., Zaki, A., & Rabie, K. (2021). One Year clinical evaluation of milled biohpp polyetheretherketone (PEEK)-based versus metal ceramic single crowns (Randomized controlled clinical trial). Brazilian Dental Science, 24(3). https://doi.org/10.14295/bds.2021.v24i3.2518

Bureau of Dental Health. (2018). The 8th National Oral Health Survey 2017 of Thailand. Nonthaburi: Bureau of Dental Health, Department of Health, Ministry of Public Health; 2018 [cited 2022 May]. https://dental.anamai.moph.go.th/web upload/migrated/files/dental2/n2424_765046ad86a54985537887456d464d2f_surveu_8th_2nd_แยกเขตสุขภาพ.pdf (in Thai)

Chen, X., Mao, B., Zhu, Z., Yu, J., Lu, Y., Zhang, Q., Yue, L., & Yu, H. (2019). A three-dimensional finite element analysis of mechanical function for 4 removable partial denture designs with 3 framework materials: CoCr, Ti-6Al-4V alloy and PEEK. Scientific Reports, 9(1), 13975. https://doi.org/10.1038/s41598-019-50363-1

Costa-Palau, S., Torrents-Nicolas, J., Brufau-de Barberà, M., & Cabratosa-Termes, J. (2014). Use of polyetheretherketone in the fabrication of a maxillary obturator prosthesis: A clinical report. Journal of Prosthetic Dentistry, 112(3), 680-682. https://doi.org/10.1016/j.prosdent.2013.10.026

de Araújo Nobre, M., Moura Guedes, C., Almeida, R., Silva, A., & Sereno, N. (2020). Hybrid polyetheretherketone (PEEK)-Acrylic resin prostheses and the all-on-4 concept: A full-arch implant-supported fixed solution with 3 years of follow-up. Journal of Clinical Medicine, 9(7). https://doi.org/10.3390/jcm9072187

Douglass, C. W., & Watson, A. J. (2002). Future needs for fixed and removable partial dentures in the United States. Journal of Prosthetic Dentistry, 87(1), 9-14. https://doi.org/10.1067/mpr.2002.121204

Emera, R., Elgamal, M., & Altonbary, G. (2020). Retention force of all-zirconia, all-polyetheretherketone, and zirconia-polyetheretherketone telescopic attachments for implant-retained overdentures: In vitro comparative study. Journal of Dental Implants, 10(2), 78-83. https://doi.org/10.4103/jdi.jdi_4_20

Gentz, F. I., Brooks, D. I., Liacouras, P. C., Petrich, A., Hamlin, C. M., Ellert, D. O., & Ye, L. (2022). Retentive forces of removable partial denture clasp assemblies made from polyaryletherketone and Cobalt-Chromium: A comparative study. Journal of Prosthodontics, 31(4), 299-304. https://doi.org/10.1111/jopr.13398

Ghajghouj, O., & Taşar-Faruk, S. (2019). Evaluation of fracture resistance and microleakage of endocrowns with different intracoronal depths and restorative materials luted with various resin cements. Materials, 12(16). https://doi.org/10.3390/ma12162528

Hada, T., Suzuki, T., Minakuchi, S., & Takahashi, H. (2020). Reduction in maxillary complete denture deformation using framework material made by computer-aided design and manufacturing systems. Journal of the Mechanical Behavior of Biomedical Materials, 103, 103514. https://doi.org/https://doi.org/10.1016/j.jmbbm.2019.103514

Katzer, A., Marquardt, H., Westendorf, J., Wening, J. V., & von Foerster, G. (2002). Polyetheretherketone--cytotoxicity and mutagenicity in vitro. Biomaterials, 23(8), 1749-1759. https://doi.org/10.1016/s0142-9612(01)00300-3

Kelkar, K. C., Bhat, V., & Hegde, C. (2021). Finite element analysis of the effect of framework materials at the bone-implant interface in the all-on-four implant system. Dental Research Journal, 18, 1-1. https://pubmed.ncbi.nlm.nih.gov/34084288

Kurtz, S. M. (2012). Chapter 1 - An overview of PEEK biomaterials. In S. M. Kurtz (Ed.), PEEK Biomaterials Handbook (pp. 1-7). William Andrew Publishing. https://doi.org/https://doi.org/10.1016/B978-1-4377-4463-7.10001-6

Liebermann, A., Wimmer, T., Schmidlin, P. R., Scherer, H., Löffler, P., Roos, M., & Stawarczyk, B. (2016). Physicomechanical characterization of polyetheretherketone and current esthetic dental CAD/CAM polymers after aging in different storage media. Journal of Prosthetic Dentistry, 115(3), 321-328.e322. https://doi.org/10.1016/j.prosdent.2015.09.004

Luft, V., Pospiech, P., Schurig, A., & Schmitter, M. (2021). In vitro investigations on retention force behavior of conventional and modern double crown systems. Dental Materials Journal, 37(1), 191-200. https://doi.org/10.1016/j.dental.2020.10.028

Ma, R., & Tang, T. (2014). Current strategies to improve the bioactivity of PEEK. International Journal of Molecular Sciences, 15(4), 5426-5445. https://doi.org/10.3390/ijms15045426

Mourya, A., Nahar, R., Mishra, S. K., & Chowdhary, R. (2021). Stress distribution around different abutments on titanium and CFR-PEEK implant with different prosthetic crowns under parafunctional loading: A 3D FEA study. Journal of Oral Biology and Craniofacial Research, 11(2), 313-320. https://doi.org/10.1016/j.jobcr.2021.03.005

Najeeb, S., Zafar, M. S., Khurshid, Z., & Siddiqui, F. (2016). Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. Journal of Prosthodontics Research, 60(1), 12-19. https://doi.org/10.1016/j.jpor.2015.10.001

Nazari, V., Ghodsi, S., Alikhasi, M., Sahebi, M., & Shamshiri, A. R. (2016). Fracture strength of three-unit implant supported fixed partial dentures with excessive crown height fabricated from different materials. Journal of Dentistry (Tehran), 13(6), 400-406.

Parmigiani-Izquierdo, J. M., Cabaña-Muñoz, M. E., Merino, J. J., & Sánchez-Pérez, A. (2017). Zirconia implants and peek restorations for the replacement of upper molars. International Journal of Implant Dentistry, 3(1), 5. https://doi.org/10.1186/s40729-016-0062-2

Prechtel, A., Stawarczyk, B., Hickel, R., Edelhoff, D., & Reymus, M. (2020). Fracture load of 3D printed PEEK inlays compared with milled ones, direct resin composite fillings, and sound teeth. Clinical Oral Investigations, 24(10), 3457-3466. https://doi.org/10.1007/s00784-020-03216-5

Preis, V., Hahnel, S., Behr, M., Bein, L., & Rosentritt, M. (2017). In-vitro fatigue and fracture testing of CAD/CAM-materials in implant-supported molar crowns. Dental Materials Journal, 33(4), 427-433. https://doi.org/10.1016/j.dental.2017.01.003

Raj, D. A., Chander, N. G., Reddy, J. R., & Balasubramaniam, M. (2020). Clinical acceptability of PEEK fixed dental prosthesis in partially edentulous patient - A one year single arm pilot study. Journal of Oral Biology and Craniofacial Research, 10(4), 523-528. https://doi.org/10.1016/j.jobcr.2020.08.006

Rajamani, V. K., Reyal, S. S., Gowda, E. M., & Shashidhar, M. P. (2021). Comparative prospective clinical evaluation of computer aided design/ computer aided manufacturing milled BioHPP PEEK inlays and Zirconia inlays. Journal of Indian Prosthodontic Society, 21(3), 240-248. https://doi.org/10.4103/jips.jips_57_21

Rauch, A., Hahnel, S., Günther, E., Bidmon, W., & Schierz, O. (2020). Tooth-Colored CAD/CAM materials for application in 3-unit fixed dental prostheses in the molar area: An illustrated clinical comparison. Materials (Basel), 13(24). https://doi.org/10.3390/ma13245588

Rodríguez, V., Tobar, C., López-Suárez, C., Peláez, J., & Suárez, M. J. (2021). Fracture load of metal, zirconia and polyetheretherketone posterior CAD-CAM milled fixed partial denture frameworks. Materials (Basel), 14(4). https://doi.org/10.3390/ma14040959

Sailer, I., Asgeirsson, A. G., Thoma, D. S., Fehmer, V., Aspelund, T., Özcan, M., & Pjetursson, B. E. (2018). Fracture strength of zirconia implant abutments on narrow diameter implants with internal and external implant abutment connections: A study on the titanium resin base concept. Clinical Oral Implants Research, 29(4), 411-423. https://doi.org/10.1111/clr.13139

Schimmel, M., Walther, M., Al-Haj Husain, N., Igarashi, K., Wittneben, J., & Abou-Ayash, S. (2021). Retention forces between primary and secondary CAD/CAM manufactured telescopic crowns: an in vitro comparison of common material combinations. Clinical Oral Investigations, 25(11), 6297-6307. https://doi.org/10.1007/s00784-021-03928-2

Schubert, O., Reitmaier, J., Schweiger, J., Erdelt, K., & Güth, J. F. (2019). Retentive force of PEEK secondary crowns on zirconia primary crowns over time. Clinical Oral Investigations, 23(5), 2331-2338. https://doi.org/10.1007/s00784-018-2657-x

Siewert, B. (2018). Metal-free implant-supported restorations in the edentulous jaw. EDI Journal, 3, 68-74.

Sirandoni, D., Leal, E., Weber, B., Noritomi, P. Y., Fuentes, R., & Borie, E. (2019). Effect of different framework materials in implant-supported fixed mandibular prostheses: A finite element analysis. International Journal of Oral & Maxillofacial Implants, 34(6), e107-e114. https://doi.org/10.11607/jomi.7255

Stawarczyk, B., Beuer, F., Wimmer, T., Jahn, D., Sener, B., Roos, M., & Schmidlin, P. R. (2013). Polyetheretherketone-a suitable material for fixed dental prostheses? Journal of Biomedical Materials Research - Part B Applied Biomaterials, 101(7), 1209-1216. https://doi.org/10.1002/jbm.b.32932

Stock, V., Schmidlin, P. R., Merk, S., Wagner, C., Roos, M., Eichberger, M., & Stawarczyk, B. (2016). PEEK Primary Crowns with Cobalt-Chromium, Zirconia and Galvanic Secondary Crowns with Different Tapers-A Comparison of Retention Forces. Materials (Basel), 9(3). https://doi.org/10.3390/ma9030187

Tannous, F., Steiner, M., Shahin, R., & Kern, M. (2012). Retentive forces and fatigue resistance of thermoplastic resin clasps. Dental Materials Journal, 28(3), 273-278. https://doi.org/10.1016/j.dental.2011.10.016

Tasopoulos, T., Pachiou, A., Kouveliotis, G., Karaiskou, G., Ottenga, M., & Zoidis, P. (2021). An 8-year clinical outcome of posterior inlay retained resin bonded fixed dental prosthesis utilizing high performance polymer materials: A clinical report. Journal of Prosthodontics, 30(1), 19-23. https://doi.org/10.1111/jopr.13266

Villefort, R. F., Tribst, J. P. M., Dal Piva, A. M. O., Borges, A. L., Binda, N. C., Ferreira, C. E. A., Bottino, M. A., & von Zeidler, S. L. V. (2020). Stress distribution on different bar materials in implant-retained palatal obturator. PLoS One, 15(10), e0241589. https://doi.org/10.1371/journal.pone.0241589

Wachtel, A., Zimmermann, T., Sütel, M., Adali, U., Abou-Emara, M., Müller, W. D., Mühlemann, S., & Schwitalla, A. D. (2019). Bacterial leakage and bending moments of screw-retained, composite-veneered PEEK implant crowns. Journal of the Mechanical Behavior of Biomedical Materials, 91, 32-37. https://doi.org/10.1016/j.jmbbm.2018.11.027

Wang, J., Wu, P., Liu, H. L., Zhang, L., Liu, L. P., Ma, C. F., & Chen, J. H. (2021). Polyetheretherketone versus titanium CAD-CAM framework for implant-supported fixed complete dentures: A retrospective study with up to 5-year follow-up. Journal of Prosthodontics Research. https://doi.org/10.2186/jpr.JPR_D_20_00142

Yilmaz, B., Batak, B., & Seghi, R. R. (2019). Failure analysis of high performance polymers and new generation cubic zirconia used for implant-supported fixed, cantilevered prostheses. Clinical Implant Dentistry and Related Research, 21(6), 1132-1139. https://doi.org/10.1111/cid.12844

Zoidis, P. (2018a). The all-on-4 modified polyetheretherketone treatment approach: A clinical report. Journal of Prosthetic Dentistry, 119(4), 516-521. https://doi.org/10.1016/j.prosdent.2017.04.020

Zoidis, P. (2018b). Polyetheretherketone overlay prosthesis over high noble ball attachments to overcome base metal sensitivity: A clinical report. Journal of Prosthodontics, 27(8), 688-693. https://doi.org/10.1111/jopr.12747

Zoidis, P., Papathanasiou, I., & Polyzois, G. (2016). The use of a modified Poly-Ether-Ether-Ketone (PEEK) as an alternative framework material for removable dental prostheses. A clinical report. Journal of Prosthodontics, 25(7), 580-584. https://doi.org/10.1111/jopr.12325

Downloads

เผยแพร่แล้ว

2023-09-22