Comparison of the shelf life of sterilization of medical devices sterilized by steaming package in 2 pieces of Non Woven during 4 weeks and 8 weeks. Sisaket Hospital
Keywords:
Non-woven fabric, medical devices, Sterile periodAbstract
This experimental research comparing shelf life of sterility of medical devices sterilized by steaming wrapped with 2 non-woven sheets during a period of 4 weeks and 8 weeks, Sisaket Hospital. Sample included of Wrap medical devices with 2 pieces of non-woven fabric and sterilizing by steaming under standard pressure from a central supply unit. Random evaluations were performed at 4 weeks for 375 sets, and 8 weeks for 375 sets, respectively, to assess the integrity of the wraps, expiration date, absence of fraying, remaining autoclave tape, temperature and relative humidity of the shelves and microbial sterility at 4 and 8 weeks. Data were analyzed with descriptive statistics as numbers, percentages, means and standard deviations and estimated as standard comparison points estimation at a statistic significant level 0.01.
Results found that medical devices’s wrapping is not torn or frayed. The adhesive tape attached to hold the non-woven is firmly attached, not exposed, or torn, not wet. Physical integrity at 4 weeks is completed for 99.8 percent (p<0.01*) and During 8 weeks for 98.6% (p<0.01*), also its had 1.4% fraying. Temperature measurement results at 4 weeks averaged 24.4-30.2 degrees Celsius (p>0.01) and average relative humidity 59.6-67.1 percent (p<0.01*) and at 8 weeks averaged 26.6-27.7 degrees Celsius (p>0.01) and average relative humidity 52.5-58.1 percent (p<0.01*). Microbial contamination was not found 100-100% (p<0.01*) and 8 weeks did not find 100-100% contamination (p<0.01*).
References
Egger, R. Overviiew of the situation worldwide: highlight of achievements and gaps [Internet]. 2022. Available from: https://apps.who.int/gb/MSPI/pdf_files/2022/03/Item1_07-03.pdf
Russo, P.L., Stewardson, A.J., Cheng, A.C., Bucknall, T., Mitchell, B.G. The prevalence of healthcare associated infections among adult inpatients at nineteen large Australian acute-care public hospitals: a point prevalence survey. Ntimicrob Resist Infect Control. 2019;15(8):114–21.
Centers for Disease Control and Prevention , author. National Nosocomial Infections Surveillance (NNIS) System report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control. 2004;32:470–85.
Weigelt, J.A., Lipsky, B.A., Tabak, Y.P., et al. Surgical site infections: Causative pathogens and associated outcomes. Am J Infect Control. 2010;38:112–20.
Ferreira, E., Pina, E., Sousa-Uva, M., Sousa-Uva, A. Risk factors for health care–associated infections: From better knowledge to better prevention. Am J Infect Control. 2017;45:e103-107.
Humphreys, H. Preventing surgical site infection. Where now? J Hosp Infect. 2009;73:316–22.
Mangram, A.J., Horan, T.C., Pearson ML, et al. Guideline for prevention of surgical site infection 1999. Infect Control Hosp Epidemiol. 1999;(20):247–78.
Dharan, S., Pittet, D. Environmental controls in operating theatres. J Hosp Infect. 2002;51(2):155–9.
สถาบันบำราศนราดูร กรมควบคุมโรค. รายงานอัตราการติดเชื้อในโรงพยาบาลระดับประเทศ ปี 2565. นนทบุรี: สถาบันบำราศนราดูร; 2565.
WHO. Report on the Burden of Endemic Health Care-Associated Infection Worldwide [Internet]. 2019. Available from: https: //apps.who.int/iris/bitstream/handle/10665/80135/9789241501507_eng.pdf;jsessionid=86B33E75BBE594E6C2CBD998F1C8 8CA5?sequence=1
Garvey, M. Medical Device-Associated Healthcare Infections: Sterilization and the Potential of Novel Biological Approaches to Ensure Patient Safety. Int J Mol Sci. 2024;25(1):201–9.
ธนิดา อินทะจักร์. การป้องกันและควบคุมการติดเชื้อในโรงพยาบาล : ประสิทธิผลของการทําลายเชื้อสําหรับอุปกรณ์เครื่องมือแพทย์ในโรงพยาบาล. วารสารกฎหมายสุขภาพและสาธารณสุข. 2560;3(1):64–76.
ASHRAE. 2017 ASHARAE Handbook. Washinton: American Society of Heating, Refrigerating and Air-Conditioning Engineers; 2017.
Morton ,P.J., Conner, R. Implementing AORN recommended practices for selection and use of packaging systems for sterilization. AORN J. 2014;99(4):495–502.
Krohn, M., Fengler, J., Mickley, T., Flessa, S. Analysis of processes and costs of alternative packaging options of sterile goods in hospitals – a case study in two German hospitals. Health Econ Rev. 2019;9(1):1–17.
Müller, W.W., Saathoff, F. Geosynthetics in geoenvironmental engineering. Sci Technol Adv Mater. 2015;16(3):034605.
Fibre2Fashion. Global Nonwovens: Recent Trends And Future [Internet]. 2023 [cited 2023 Feb 12]. Available from: https://www.technicaltextile.net/articles/global-nonwovens-recent-trends-and-future-7939
Webster, J., Radke, E., George, N., Faoagali, J. Barrier properties and cost implications of a single versus a double wrap for storing sterile instrument packs. Am J Infect Control. 2005;33(6):348–52.
Parthasarathi, V., Thilagavathi G. Developing antiviral surgical gown using nonwoven fabrics for health care sector. Afr Health Sci. 2013;13(2):327–32.
ลลิตา นรเศรษฐ์ธาดา. สมาคมโลหิตวิทยาแห่งประเทศไทย: การแปลผลความสมบูรณ์ของเม็ดเลือดด้วยตนเอง [Internet]. 2566. Available from: https://tsh.or.th/Knowledge/Details/34#:
งานควบคุมการแพร่กระจายเชื้อ โรงพยาบาลศรีสะเกษ. รายงานการติดเชื้อในโรงพยาบาลศรีสะเกษ. ศรีสะเกษ: งานควบคุมการแพร่กระจายเชื้อ โรงพยาบาลศรีสะเกษ; 2565.
Daneil, W.W., Cross CL. Biostatistics: A foundation for analysis in the Health Sciences. 10th ed. NJ: JohnWiley & Sons; 2013.
Song Ja C., Jeong Hee, J., Kyoung Mi, C., Mi Young, K., Joo Hee, P., Na Yeon, J. Study on the Shelf Life of Sterilized Products according to Packaging Materials. J Korean Clin Nurs Res. 2019;25(3):333–41.
de Araújo Moriya, G.A., Graziano, K.U. Sterility Maintenance Assessment of Moist/Wet Material After Steam Sterilization and 30-day Storage. Rev Lat-Am Enferm. 2010;18(4):787–91.
Devadiga, G.S., Thomas. V.M.P., Shetty, S., Setia, M.S. Is non‑woven fabric a useful method of packaging instruments for operation theatres in resource constrained settings? Indian J Med Microbiol. 2015;33(2):245–7.
Tolner, B., Poolman, B., Konings, W.N. Adaptation of microorganisms and their transport systems to high temperatures. Comp Biochem Physiol Physiol. 1997;118(3):423–8.
Cheng, S., Muhaiminul, S.M., Yue, Z., Wang, Y., Xiao, Y., Militky, J., Prasad, M. and Zhu, G. Effect of Temperature on the Structure and Filtration Performance of Polypropylene Melt-Blown Nonwovens. J Autex Res J. 2021;21(2):207–17.

