Study on Species, Concentrations and Source Apportionment of Volatile Organic Compounds (VOCs) in Indoor Air of Office Buildings
Keywords:
Indoor air quality, Volatile organic compounds VOCs, Formaldehyde, Positive Matrix Factorization (PMF)Abstract
This study is a quantitative research employing a field measurement and applied analytical approach to investigate the types, concentrations, and source contributions of volatile organic compounds (VOCs) in indoor air of Bangkok office. Air samples were collected from three office buildings with different characteristics: a new building (Office A), an old building (Office B), and a renovated old building (Office C). Sampling was conducted both indoors and outdoors for six consecutive days in each building, covering working days and weekends, during February to August 2023. The sampling and analytical procedures followed the U.S. Environmental Protection Agency (U.S. EPA) standard methods: Method TO-15 (Canister–Preconcentrator–GC/MS) for general VOCs and Method TO-11A (DNPH–HPLC) for carbonyl compounds. The collected data were statistically analyzed using the Positive Matrix Factorization (PMF) model to identify and quantify VOC emission sources.
The results revealed that the total VOC concentrations indoors ranged from 72.81 to 148.35 ppb, which were significantly higher than those outdoors (33.07–76.17 ppb). Among the buildings, Office A had the highest average indoor concentration (148.35 ppb), followed by Office C (118.52 ppb), while Office B showed the lowest (72.81 ppb). The predominant indoor VOCs were formaldehyde (32–35% of total VOCs) and ethanol (12–20%), whereas outdoor VOCs were dominated by ethanol (24–26%) and formaldehyde (15–20%). PMF analysis identified three main indoor emission sources: (1) cleaning products (60–61% in Offices A and C), (2) building materials and wooden furniture (46% in Office B), and (3) paints and adhesives (14–26%), with variations depending on the building’s age and usage characteristics. For outdoor environments, the major sources were vehicle exhaust (42–52%), background concentrations (16–31%), biogenic emissions (13–28%), and cooking activities (19% near Office C).
References
World Health Organization (WHO). Indoor air quality guidelines. Geneva: World Health Organization; 2023.
Weschler CJ, Carslaw N. Indoor chemistry. Environ Sci Technol. 2018;52(5):2419–2438. doi:10.1021/acs.est. 7b06387.
Salthammer T. Volatile organic compounds in the indoor environment. Indoor Air. 2019;29(5):770–781. doi:10.1111/ina.12589.
Salthammer T, Mentese S, Marutzky R. Formaldehyde in the indoor environment. Chem Rev. 2010; 110(4):2536–2572. doi:10.1021/cr800399g.
Deng C, Liu Y, Qiu J, Liu Y, Fan G, Yang Y, et al. Characteristics, sources and health risks of ambient volatile organic compounds (VOCs) in urban and suburban areas of Beijing, China. Atmos Environ. 2019;211:240–250. doi:10.1016/j.atmosenv.2019.05.011.
Gkatzelis GI, Coggon MM, McDonald BC, Peischl J, Gilman JB, Aikin KC, et al. The global impacts of cooking emissions on ambient air quality. Environ Sci Technol. 2021;55(1):108–116. doi:10.1021/acs.est.0c05418.
Guenther AB, Jiang X, Heald CL, Sakulyanontvittaya T, Duhl T, Emmons LK, Wang X. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci Model Dev. 2012;5:1471–1492. doi:10.5194/ gmd-5-1471-2012.
Mushtaq N, Greaves G, Siddiqui S, Alwan IA, Rahman MM, Tokoro C, et al. Critical review on emerging health effects associated with the indoor environment. Science of the Total Environment. 2023; 858:160059. doi:10.1016/j.scitotenv.2022.160059.
International Agency for Research on Cancer (IARC). Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Lyon: IARC; 2012.
กรมอนามัย. ประกาศกรมอนามัย เรื่อง ค่าเฝ้าระวังคุณภาพอากาศภายในอาคารสาธารณะ พ.ศ. 2565. กรุงเทพฯ: กรมอนามัย; 2565.
Habeebullah TM. A review on monitoring and performance of indoor air quality in buildings. Energy Reports. 2022;8:397–419. doi:10.1016/j.egyr.2021.11.261.
Wang S, Ang HM, Tade MO. Characterization of VOCs in offices in China. Build Environ. 2017;117:180–187. doi:10.1016/j.buildenv.2017.03.014.
มูลริน ต๊ะ. การสำรวจและวิเคราะห์คุณภาพอากาศภายในอาคารสำนักงาน [วิทยานิพนธ์มหาบัณฑิต]. กรุงเทพฯ: จุฬาลงกรณ์มหาวิทยาลัย; 2552.
มณีรัตน์ องค์วรรณดี. ปัจจัยที่มีผลต่อความเข้มข้นของสารอินทรีย์ระเหยง่ายในอาคารสำนักงานเขตเมือง [รายงานวิจัย]. กรุงเทพฯ: กรมควบคุมมลพิษ; 2553
Hopke PK. Review of receptor modeling methods for source apportionment. J Air Waste Manag Assoc. 2016;66(3):237–259. doi:10.1080/10962247.2016.1140693.
United States Environmental Protection Agency (US EPA). Compendium Method TO-15: Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by GC/MS. Cincinnati (OH): U.S. Environmental Protection Agency; 1999.
United States Environmental Protection Agency (US EPA). Compendium Method TO-11A: Determination of Formaldehyde in Ambient Air Using Adsorbent Cartridge Followed by HPLC. Cincinnati (OH): U.S. Environmental Protection Agency; 1999.
Helsel DR. Statistics for censored environmental data using Minitab and R. Hoboken (NJ): Wiley; 2012.
United States Environmental Protection Agency (US EPA). Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide. Washington, DC: U.S. Environmental Protection Agency; 2014. Report No.: EPA/600/R-14/108.
Sofowote UM, Su Y, Dabek-Zlotorzynska E, Chen H, Brook J, Evans G, et al. Sources and temporal variations of selected VOCs in Canada: Application of PMF. Atmos Environ. 2014;98:190–199. doi:10.1016/j.atmosenv.2014.08.065.
Zhang J, He Q, Wang S, Yao S, Zhang X, Wang C. Characteristics and health risks of VOCs in office buildings in different seasons. Build Environ. 2019;147:1–9. doi:10.1016/j.buildenv.2018.09.041.
World Health Organization (WHO). WHO guidelines for indoor air quality: selected pollutants. Geneva: World Health Organization; 2010.
Weschler CJ. Changes in indoor pollutants since the 1950s. Atmos Environ. 2009;43(1):153–169. doi:10.1016/j.atmosenv.2008.09.044.
Nazaroff WW. Indoor air chemistry in the post-COVID era. Indoor Air. 2021;31(3):466–469. doi:10.1111/ina.12769.
Morawska L, Tang JW, Bahnfleth W, Bluyssen PM, Boerstra A, Buonanno G, et al. How can airborne transmission of COVID-19 indoors be minimized. Environ Int. 2020;142:105832. doi:10.1016/j.envint. 2020.105832.
Salthammer T. Emissions of volatile organic compounds from wood and wood-based products. Environ Int. 2016;89–90:96–107. doi:10.1016/j.envint.2016.02.017.

