ปัญญาประดิษฐ์ทางการแพทย์
คำสำคัญ:
ปัญญาประดิษฐ์,, โครงข่ายประสาทเทียม,, การคำนวณเชิงวิวัฒนาการบทคัดย่อ
แพทย์ผู้เชี่ยวชาญทางคลินิกในปัจจุบันจำเป็นต้องใช้ข้อมูลเป็นจำนวนมากเพื่อประกอบการวินิจฉัย ตั้งแต่อาการหรือความผิดปกติของผู้ป่วย ข้อมูลชีวเคมีประเภทต่าง ๆ จากห้องปฏิบัติการ รวมไปถึงภาพถ่ายทางรังสีวิทยา ข้อมูลแต่ละชนิดจำเป็นต้องมีการประเมินและกำหนดแนวทางเฉพาะทางพยาธิวิทยา การใช้ประโยชน์จากปัญญาประดิษฐ์เพื่อสนับสนุนกระบวนการปฏิบัติงานและเพื่อหลีกเลี่ยงการวินิจฉัยที่ผิดพลาด โดยอัลกอริทึมการเรียนรู้แบบปรับตัวสามารถจัดการข้อมูลทางการแพทย์ประเภทต่าง ๆ และสามารถบูรณาการให้เข้ากับผลลัทธ์ที่จัดหมวดหมู่ไว้แล้วได้เป็นอย่างดี บทความนี้ทำการสำรวจเทคนิคความเชี่ยวชาญด้านปัญญาประดิษฐ์ทุกสาขาทางการแพทย์ พบว่าโครงข่ายระบบประสาทเทียมเป็นที่นิยมใช้มาก รวมถึงการอภิปรายการทำงานโดยสรุปของปัญญาประดิษฐ์ที่เกี่ยวข้องกับโครงข่ายประสาทเทียม และการทบทวนเทคนิคปัญญาประดิษฐ์อื่น ๆ เช่น ระบบ fuzzy expert การคำนวณเชิงวิวัฒนาการ และ ระบบอัจฉริยะแบบไฮบริด ล้วนถูกนำมาใช้กับสถานการณ์ทางคลินิกที่แตกต่างกัน
References
Shapiro SC. Artificial intelligence. In: Shapiro SC. (ed) Encyclopedia of Artificial Intelligence, vol. 1, 2nd edn. New York: Wiley, 1992.
Luca M, Kleinberg J, Mullainathan S (January–February 2016). "Algorithms Need Managers, Too". Harvard Business Review. Retrieved 2018-10-08.
Coiera E (1997). Guide to medical informatics, the Internet and telemedicine. Chapman & Hall, Ltd.
Steimann F. On the use and usefulness of fuzzy sets in medical AI. Artif Intell Med 2001; 21: 131–7.
Amato F., López A., Peña-Méndez E.M., Vaňhara P., Hampl A., Havel J. (2013 ) Artificial neural networks in medical diagnosis, J Appl Biomed. 11: 47–58.
Zupan J, Gasteiger J. Neural networks in chemistry and drug design. Wiley VCH, Weinheim, 380 p. 1999.
Stamey TA, Barnhill SD, Zang Z. Effectiveness of ProstAsureTM in detecting prostate cancer (PCa) and benign prostatic hyperplasia (BPH) in men age 50 and older. J Urol 1996; 155: 436A.
Pesonen E, Ohmann C, Eskelinen M, Juhola M. Diagnosis of acute appendicitis in two databases. Evaluation of different neighborhoods with an LVQ neural network. Methods Inf Med 1998; 37: 59–63.
Golub R, Cantu Jr R, Tan M. The prediction of common bile duct stones using a neural network. J Am Coll Surg 1998; 187: 584–90.
Henson DB, Spenceley SE, Bull DR. Artificial neural network analysis of noisy visual field data in glaucoma. Artif Intell Med 1997; 10: 99–113.
Bounds DG, Lloyd PJ, Mathew BG. A comparison of neural network and other pattern recognition approaches to the diagnosis of low back disorders. Neural Networks 1990; 3: 583–91.
Downs J, Harrison RF, Kennedy RL, Cross SS. Application of the fuzzy ARTMAP neural network model to medical pattern classification tasks. Artif Intell Med 1996; 8: 403–28.
Karakitsos P, Stergiou EB, Pouliakis A, Tzivras M, Archimandritis A, Liossi AI et al. Potential of the back propagation neural network in the discrimination of benign from malignant gastric cells. Anal Quant Cytol Histol 1996; 18: 245–50.
Karakitsos P, Cochand-Priollet B, Guillausseau PJ, Pouliakis A. Potential of the back propagation neural network in the morphologic examination of thyroid lesions. Anal Quant Cytol Histol 1996; 18: 495–500.
Brickley MR, Cowpe JG, Shepherd JP. Performance of a computer simulated neural network trained to categorise normal, premalignant and malignant oral smears. J Oral Pathol Med 1996; 25: 424–8.
Hurst RE, Bonner RB, Ashenayi K, Veltri RW, Hemstreet 3rd GP. Neural net-based identification of cells expressing the p300 tumor-related antigen using fluorescence image analysis. Cytometry 1997; 27: 36–42.
Truong H, Morimoto R, Walts AE, Erler B, Marchevsky A. Neural networks as an aid in the diagnosis of lymphocyte-rich effusions. Anal Quant Cytol Histol 1995; 17: 48–54.
Ashizawa K, Ishida T, MacMahon H, Vyborny CJ, Katsuragawa S, Doi K. Artificial neural networks in chest radiography: application to the differential diagnosis of interstitial lung disease. Acad Radiol 1999; 6: 2–9.
Tailor A, Jurkovic D, Bourne TH, Collins WP, Campbell S. Sonographic prediction of malignancy in adnexal masses using an artificial neural network. Br J Obstet Gynaecol 1999; 106: 21–30.
Matsuki Y, Nakamura K, Watanabe H, Aoki T, Nakata H, Katsuragawa S et al. Usefulness of an artificial neural network for differentiating benign from malignant pulmonary nodules on high-resolution CT: evaluation with receiver operating characteristic analysis. Am J Roentgenol 2002; 178: 657–63.
Lucht R, Delorme S, Brix G. Neural network-based segmentation of dynamic MR mammographic images. Magn Reson Imaging 2002; 20: 147–54.
Fisher RE, Scott JA, Palmer EL. Neural networks in ventilation-perfusion imaging. Radiology 1996; 198: 699–706.
Heden B, Edenbrandt L, Haisty Jr WK, Pahlm O. Artificial neural networks for the electrocardiographic diagnosis of healed myocardial infarction. Am J Cardiol 1994; 74: 5–8.
Yang TF, Devine B, Macfarlane PW. Artificial neural networks for the diagnosis of atrial fibrillation. Med Biol Eng Comput 1994; 32: 615–9.
Dassen WR, Karthaus VL, Talmon JL, Mulleneers RG, Smeets JL, Wellens HJ. Evaluation of new self-learning techniques for the generation of criteria for differentiation of wide-QRS tachycardia in supraventricular tachycardia and ventricular tachycardia. Clin Cardiol 1995; 18: 103–8.
Walczak S, Nowack WJ. An artificial neural network approach to diagnosing epilepsy using lateralized bursts of theta EEGs. J Med Syst 2001; 25: 9–20.
Schaltenbrand N, Lengelle R, Toussaint M, Luthringer R, Carelli G, Jacqmin A et al. Sleep stage scoring using the neural network model: comparison between visual and automatic analysis in normal subjects and patients. Sleep 1996; 19: 26–35.
Abel EW, Zacharia PC, Foster A. Neural network analysis of the EMG interference pattern. Med Eng Phys 1996; 18: 12–7.
Smith JH, Graham J, Taylor RJ. The application of an artificial neural network to Doppler ultrasound waveforms for the classification of arterial disease. Int J Clin Monit Comput 1996; 13: 85–91.
Spencer RG, Lessard CS, Davilla F, Etter B. Self-organising discovery, recognition and prediction of haemodynamic patterns in the intensive care unit. Med Biol Eng Comput 1997; 35: 117–23.
Burke HB, Goodman PH, Rosen DB, Henson DE, Weinstein JN, Harrell Jr FE et al. Artificial neural networks improve the accuracy of cancer survival prediction. Cancer 1997; 79: 857–62.
Burke HB, Hoang A, Iglehart JD, Marks JR. Predicting response to adjuvant and radiation therapy in patients with early stage breast carcinoma. Cancer 1998; 82: 874–7.
Bottaci L, Drew PJ, Hartley JE, et al. Artificial neural networks applied to outcome prediction for colorectal cancer patients in separate institutions. Lancet 1997; 350: 469–72.
Zadeh LA. Biological application of the theory of fuzzy sets and systems. In: Proceedings of the International Symposium on Biocybernetics of the Central Nervous System. Boston: Little Brown, 1969; 199–212.
Schneider J, Bitterlich N, velcovsky HG, Morr H, Katz N, Eigenbrodt E. Fuzzy-logic based tumor-marker profiles improved sensitivity in the diagnosis of lung cancer. Int J Clin Oncol 2002; 7: 145–51.
Belacel N, Vincke P, Scheiff JM, Boulassel MR. Acute leukemia diagnosis aid using multicriteria fuzzy assignment methodology. Comput Methods Programs Biomed 2001; 64: 145–51.
Sarkar M, Leong TY. Nonparametric techniques to extract fuzzy rules for breast cancer diagnosis problem. Medinfo 2001; 19: 1394–8.
Halm U, Rohde N, Klapdor R, Reith HB, Thiede A, Etzrodt G et al. Improved sensitivity of fuzzy logic based tumor marker profiles for diagnosis of pancreatic carcinoma versus benign pancreatic disease. Anticancer Res 2000; 20: 4957–60.
Koyama S, Obata Y, Shimamoto K, Ishigaki T, Ishii N, Isomoto Y et al. Breast ultrasonography: computer-aided diagnosis using fuzzy inference. J Ultrasound Med 1997; 16: 665–72.
Badawi AM, Derbala AS, Youssef AM. Fuzzy logic algorithm for quantitative tissue characterization of diffuse liver diseases from ultrasound images. Int J Med Inf 1999; 55: 135–47.
Klein HM, Eisele T, Klose KC, Stauss I, Brenner M, Ameling W et al. Pattern recognition system for focal liver lesions using ‘crisp’ and ‘fuzzy’ classifiers. Invest Radiol 1996; 31: 6–10.
Fletcher-Heath LM, Hall LO, Goldgof DB, Murtagh FR. Automatic segmentation of non-enhancing brain tumors in magnetic resonance images. Artif Intell Med 2001; 21: 43–63.
Ying H, McEachern M, Eddleman DW. Fuzzy control of mean arterial pressure in postsurgical patients with sodium nitroprusside infusion. IEEE Trans Biomedical Eng 1992; 39: 1060–70.
Mason DG, Ross JJ, Edwards ND. Self-learning fuzzy control of atracurium-induced neuromuscular block during surgery. Med Biol Engin Comput 1997; 35: 498–503.
Holland JH. Adaptation in Natural and Artificial Systems. Ann Arbor, MI: University of Michigan Press, 1975.
Toro F., Ros E., Mota S., Ortega J. Evolutionary Algorithms for Multiobjective and Multimodal Optimization of Diagnostic Schemes 2014; 53(2): 178-189.
Jefferson MF, Pendleton N, Lucas SB, Horan MA. Comparison of a genetic algorithm neural network with logistic regression for predicting outcome after surgery for patients with nonsmall cell lung carcinoma. Cancer 1997; 79: 1338–42.
Sierra B, Larranaga P. Predicting survival in malignant skin melanoma using Bayesian networks automatically induced by genetic algorithms. An empirical comparison between different approaches. Artif Intell Med 1998; 14: 215–30.
Narayanan MN, Lucas SB. A genetic algorithm to improve a neural network to predict a patient’s response to warfarin. Methods Inf Med 1993; 32: 55–8.
Chan HP, Sahiner B, Lam KL. Computerized analysis of mammography microcalcifications in morphological and texture feature spaces. Med Phys 1998; 25: 2007–19.
Velthuizen RP, Hall LO, Clarke LP. Feature extraction for MRI segmentation. J Neuroimaging 1999; 9: 85–90.
Handels H, Rop T, Kreusch J, Wolff HH, Poppl SJ. Feature selection for optimized skin tumor recognition using genetic algorithms. Artif Intell Med 1999; 16: 283–97.
Pena-Reyes, Sipper M. A fuzzy-genetic approach to breast cancer diagnosis. Artif Intell Med 1999; 17: 131–55.
Verma B, Zakos J. A computer-aided diagnosis system for digital mammograms based on fuzzy-neural and feature extraction techniques. IEEE Trans Biomedical Eng 2001; 5: 46–54.
Sztandera LM, Goodenday LS, Cios KJ. A neuro-fuzzy algorithm for diagnosis of coronary artery stenosis. Comput Biol Med 1996; 26: 97–111.
Allen R, Smith D. Neuro-fuzzy closed-loop control of depth of anesthesia. Artif Intell Med 2001; 21: 185–91.
Downloads
เผยแพร่แล้ว
How to Cite
ฉบับ
บท
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.