Laboratory Testing in Anti-Aging Medicine
Keywords:
anti-aging medicine, laboratory investigations, molecular biomarkersAbstract
Anti-aging medicine is a medical discipline that emphasizes the prevention of disease, health restoration and the promotion of longevity with optimal quality of life through a holistic approach. Laboratory investigations play a pivotal role in in-depth assessment and treatment monitoring by evaluating the balance and degeneration of body systems, such as the hormonal, metabolic and immune systems. This is achieved by measuring hormone levels, vitamins, inflammatory markers, antioxidant status, glucose regulation, lipid profiles, liver and renal function, as well as assessing cellular and chromosomal aging biomarkers, including telomere length and DNA methylation analysis. This article aims to compile various types of tests and biomarkers, along with concepts for applying laboratory testing in anti-aging medicine to enable precise health evaluation. Integrating laboratory results with physical examination, medical history, lifestyle behaviors and clinical symptoms enable the development of personalized therapeutic strategies, decelerate physiological decline, and prevent age-related chronic diseases. This proactive healthcare approach ultimately enhances long-term quality of life.
References
กรมกิจการผู้สูงอายุุ & กระทรวงการพัฒนาสังคมและความมั่นคงของมนุษย์. (2567). สถานการณ์ผู้สูงอายุุไทย พ.ศ. 2566. กรมกิจการผู้สูงอายุ.
มาศ ไม้ประเสริฐ. (2559). เวชศาสตร์ชะลอวัยและฟื้นฟูสุขภาพคืออะไร? วารสารสุทธิปริทัศน์, 30 (ฉบับพิเศษ), 266–280.
สำนักบริหารการทะเบียน กรมการปกครอง. (2567). สถิติประชากรทางการทะเบียนราษฎร.
https://stat.bora.dopa.go.th/stat/statnew/statMONTH/statmonth/#/mainpage
Fedarko, N. S. (2011). The Biology of Aging and Frailty. Clinics in Geriatric Medicine, 27(1), 27–37. https://doi.org/10.1016/j.cger.2010.08.006
Fz, S., & Nj, C. (2014). Measurement of estradiol Challenges ahead. The Journal of Clinical Endocrinology and Metabolism, 99(1).
https://doi.org/10.1210/jc.2013-2905
Goldsmith, T. C. (2016). Evolution of aging theories: Why modern programmed aging concepts are transforming medical research. Biochemistry (Moscow), 81(12), 1406–1412. https://doi.org/10.1134/S0006297916120026
Green, S., & Hillersdal, L. (2021). Aging biomarkers and the measurement of health and risk. History and Philosophy of the Life Sciences, 43(1), 28.
https://doi.org/10.1007/s40656-021-00367-w
Handelsman, D. J., Sikaris, K., & Ly, L. P. (2016). Estimating age-specific trends in circulating testosterone and sex hormone-binding globulin in males and females across the lifespan. Annals of Clinical Biochemistry, 53(Pt 3), 377–384.
https://doi.org/10.1177/0004563215610589
Harman, D. (1956). Aging: A Theory Based on Free Radical and Radiation Chemistry. Journal of Gerontology, 11(3), 298–300.
https://doi.org/10.1093/geronj/11.3.298
Hattburg, A. T. von. (2025). Epigenetics and Life Extension: The Role of Epigenetic Modifications in Ageing and Reversing Biological Age through Lifestyle Interventions. American Journal of Biomedical Science & Research, 25(6), 769.
Hayflick, L. (2007). Biological aging is no longer an unsolved problem. Annals of the New York Academy of Sciences, 1100, 1–13.
https://doi.org/10.1196/annals.1395.001
Horvath, S., & Raj, K. (2018). DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nature Reviews. Genetics, 19(6), 371–384.
https://doi.org/10.1038/s41576-018-0004-3
Houston, M. (2014). The role of nutrition and nutraceutical supplements in the treatment of hypertension. World Journal Cardiol, 6(2), 38.
https://doi.org/10.4330/wjc.v6.i2.38
Hurvitz, N., Elkhateeb, N., Sigawi, T., Rinsky-Halivni, L., & Ilan, Y. (2022). Improving the effectiveness of anti-aging modalities by using the constrained disorder principle-based management algorithms. Frontiers in Aging, 3, 1044038.
https://doi.org/10.3389/fragi.2022.1044038
Lipsky, M. S., & King, M. (2015). Biological theories of aging. Disease-a-Month, 61(11), 460–466. https://doi.org/10.1016/j.disamonth.2015.09.005
Lobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Reviews, 4(8), 118– 126. https://doi.org/10.4103/0973-7847.70902
López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2023). Hallmarks of aging: An expanding universe. Cell, 186(2), 243–278.
https://doi.org/10.1016/j.cell.2022.11.001
Myhill, Sarah. (2014). Diagnosis and treatment of chronic fatigue syndrome and myalgic encephalitis: It’s mitochondria, not hypochondria. Hammersmith Press.
Ok, S.C. (2022). Insights into the Anti-Aging Prevention and Diagnostic Medicine and Healthcare. Diagnostics, 12(4), 819.
https://doi.org/10.3390/diagnostics12040819
Rajman, L., Chwalek, K., & Sinclair, D. A. (2018). Therapeutic Potential of NAD-Boosting Molecules: The In Vivo Evidence. Cell Metabolism, 27(3), 529–547.
https://doi.org/10.1016/j.cmet.2018.02.011
Shammas M.A. (2011). Telomeres, lifestyle, cancer, and aging. Current Opinion in Clinical Nutrition and Metabolic Care, 14(1), 28–34.
https://doi.org/10.1097/MCO.0b013e32834121b1
World Health Organization. (2002). Active ageing: A policy framework.
https://apps.who.int/iris/bitstream/handle/10665/67215
Xia, S., Zhang, X., Zheng, S., Khanabdali, R., Kalionis, B., Wu, J., Wan, W., & Tai, X. (2016). An Update on Inflamm-Aging: Mechanisms, Prevention, and Treatment. Journal of Immunology Research, 2016, 1–12.
https://doi.org/10.1155/2016/8426874
Yu, J., Li, T., & Zhu, J. (2022). Gene Therapy Strategies Targeting Aging-Related Diseases. Aging and Disease. https://doi.org/10.14336/AD.2022.00725