Sample size Calculation in Design of Experiments

Authors

  • Vadhana Jayathavaj Pathumthani University
  • Puttiphong Jaroonsiriphan Patumthani University

Keywords:

Effect size, Power of a Test, Type I error

Abstract

               Calculation  of  sample  size  in  experimental  research  for  mean comparison is formulated by using type I error,  power of a test  (1 - type II error)    and  effect  size   (the  mean  difference  divided   by  the  standard deviation).  The  formula  is  assigned  to  the normal  population  with  the standard deviation.  It is known and invariant even though the population mean has been changed.  This  makes it possible  to determine  the  size  of the mean  difference for which the difference is to be detected  (effect size) and the intended  risks of  type I error  (producer’s  risk)  and  type II error (consumer’s  risk)  can be determined.  This  formula can be applied  effect size by Cohen's suggestions,  without prior information  acknowledgement of both the mean and standard deviation.  Also, the choice of appropriated sample size to detect any mean difference depends on the research budget.

References

Bartlett, J. (2021). A Guide to G*Power, jamovi, and Superpower Version 1.3 (06/07/2021). https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjh2IOD7Jr0AhVx8XMBHRVvAdQQFnoECAMQAw&url=https%3A%2F%2Fosf.io%2Fzqphw%2Fdownload&usg=AOvVaw196Jge9JYwy6HoDTA_R05T.

Brainerd, S. (n.d.). Basic Statistics Sample size ?. OHSU OGI Class ECE-580-DOE: Statistical Process Control and Design of Experiments.https://myplace.frontier.com/~stevebrainerd1/STATISTICS/ECE-580-DOE%20WEEK%203_files/Sample_size_deter.pdf.

Bluman, A.G. (1998). Elementary Statistics. (3rd ed). Boston: WBC McGraw-Hill.

CinCalc.com. (2021). Sample Size Calculator Determines the minimum number of subjects for adequate study power. https://clincalc.com/ stats/samplesize.aspx.

Cochran, W. G. (1977). Sampling techniques. (3rd ed). New York: John Wiley & Sons.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. (2nd ed). New Jersy: Lawrence Erlbaum Associates.

Faul, F., Erdfelder, E., Buchner, A., and Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods. 41, 1149-1160.

Groebner, D.F., Shannon, P.W., Fry, P.C., and Smith, K.D. (2018). Business Statistics: A DecisionMaking Approach. (10th ed). Harlow, England: Pearson.

Krejcie, R. V., and Morgan, D. W. (1970). Determining Sample Size for Research Activities. Educational and Psychological Measurement. 30, 607-610.

Mathai, A. and Haubold, H. (2017). Sampling distributions. In Probability and Statistics: A

Course for Physicists and Engineers (pp. 259-302). https://doi.org/10.1515/9783110562545-010.

Oliveira, A. G. (2020). Biostatics Decoded. (2nd ed). New Jersy: Wiley.

Johnson, R. A., and Wichern, D. W. (2007). Applied Multivariate Statistical Analysis. (6th ed). New Jersy: Pearson Prentice Hall.

Rosner, B. (2015). Fundamentals of Biostatistics. (8th ed). USA: Cengage Learning.

Walpole, R.E., Myers, R.H., Myers, S.L., and Ye, K. (2012). Probability & Statistics for Engineers & Scientists. (9th ed). Boston: Prentice Hall.

Walpole, R. E. (1982). Introduction to Statistics. (3rd ed). New York: Macmillan Publishing Co., Inc.

Yamane, T. (1967). Statistics: An Introductory Analysis. (2nd ed). New York: Harper and Row.

Downloads

Published

28-02-2023

How to Cite

Jayathavaj, V. ., & Jaroonsiriphan, P. (2023). Sample size Calculation in Design of Experiments . Journal of Science and Technology Northern, 2(4), 1–13. retrieved from https://he03.tci-thaijo.org/index.php/scintc/article/view/1147