Behavioral Ecology of Adult Anopheles gambiae: Insights for Malaria Control in Sub-Saharan Africa
คำสำคัญ:
Anopheles gambiae, , Feeding, , Resting, , Malaria Transmission Dynamics, , Malaria Controlบทคัดย่อ
Background: Malaria remains a significant challenge to public health and socio-economic development in Sub-Saharan Africa, primarily transmitted by the vector Anopheles gambiae.
Objective: This review aims to examine the behavioural ecology of A. gambiae and synthesize the implications for current and future malaria control strategies.
Methods: A comprehensive literature review was conducted, focusing on the factors influencing the vectorial capacity of A. gambiae and the integrated approaches for its control.
Results: The efficiency of A. gambiae as a vector is driven by its nocturnal, anthropophilic feeding habits and remarkable environmental adaptability. Key anthropogenic and ecological factors, including urbanisation and climate change, are shifting mosquito habitats and influencing critical behaviours. Furthermore, evolving metabolic resistance compromises conventional chemical control. The impact of malaria is multifaceted, encompassing severe health outcomes and significant economic burdens. Emerging technologies like CRISPR-based gene drives, Wolbachia biocontrol, and the R21/MM vaccine offer promising solutions. Sustainable success is contingent on integrating these with community-driven interventions like larval source management within a holistic One Health approach.
Conclusion: Eradicating malaria in Sub-Saharan Africa is an attainable yet formidable goal. Future efforts must prioritize rigorous field testing of novel tools and generate predictive models through interdisciplinary research that integrates behavioural, ecological, and socioeconomic data. This requires adaptive, evidence-based strategies and enhanced surveillance systems.
เอกสารอ้างอิง
Msugupakulya BJ, Urio NH, Jumanne M, Ngowo HS, Selvaraj P, Okumu FO, et al. Changes in contributions of different Anopheles vector species to malaria transmission in East and Southern Africa from 2000 to 2022. Parasites & Vectors. 2023;16(1):408.
Vigbedor BY, Osei-Owusu J, Kwakye R, Neglo D. Bioassay‐Guided Fractionation, ESI‐MS Scan, Phytochemical Screening, and Antiplasmodial Activity of Afzelia africana. Biochemistry Research International. 2022;2022(1):6895560.
Giraldo D, McMeniman CJ. Quantification of Anopheles gambiae olfactory preferences under semi-field conditions. Cold Spring Harbor Protocols. 2024;2024(4):pdb. prot108304.
Das S, Dimopoulos G. Molecular analysis of photic inhibition of blood-feeding in Anopheles gambiae. BMC physiology. 2008;8:1-19.
Cibulskis RE, Alonso P, Aponte J, Aregawi M, Barrette A, Bergeron L, et al. Malaria: global progress 2000–2015 and future challenges. Infectious diseases of poverty. 2016;5:1-8.
Caputo B, Nwakanma D, Caputo F, Jawara M, Oriero E, Hamid‐Adiamoh M, et al. Prominent intraspecific genetic divergence within Anopheles gambiae sibling species triggered by habitat discontinuities across a riverine landscape. Molecular Ecology. 2014;23(18):4574-89.
Li C, Gao Y, Zhao Z, Ma D, Zhou R, Wang J, et al. Potential geographical distribution of Anopheles gambiae worldwide under climate change. Journal of Biosafety and Biosecurity. 2021;3(2):125-30.
WHO. World Malaria Report 2022 [Available from: https://www.who.int/news-room/fact-sheets/detail/malaria.
Komba EB, Balan RT, Ismail A. Contributions of time, temperature, and humidity on the biting behaviour of anopheles funestus at Lupiro village in Morogoro, Tanzania. Acta Entomology and Zoology. 2024;5(2):47-53.
Ndiaye F, Diop A, Chabi J, Sturm-Ramirez K, Senghor M, Diouf EH, et al. Distribution and dynamics of Anopheles gambiae sl larval habitats in three Senegalese cities with high urban malaria incidence. Plos one. 2024;19(5):e0303473.
Armando CJ, Rocklöv J, Sidat M, Tozan Y, Mavume AF, Bunker A, et al. Climate variability, socio-economic conditions, and vulnerability to malaria infections in Mozambique 2016–2018: a spatial-temporal analysis. Frontiers in Public Health. 2023;11:1162535.
Hargreaves K, Koekemoer L, Brooke B, Hunt R, Mthembu J, Coetzee M. Anopheles funestus resistant to pyrethroid insecticides in South Africa. Medical and veterinary entomology. 2000;14(2):181-9.
Sinka ME, Bangs MJ, Manguin S, Coetzee M, Mbogo CM, Hemingway J, et al. The dominant Anopheles vectors of human malaria in Africa, Europe, and the Middle East: occurrence data, distribution maps, and bionomic précis. Parasites & vectors. 2010;3(1):117.
Gillies MT, Coetzee M. A supplement to the Anophelinae of Africa South of the Sahara. Publ S Afr Inst Med Res. 1987;55:1-143.
White SA, Kaufman PE. African malaria mosquito Anopheles gambiae Giles (Insecta: Diptera: Culicidae): EENY601/IN1048, 9/2014. EDIS. 2014;2014(8).
Connolly JB, Mumford JD, Glandorf DC, Hartley S, Lewis OT, Evans SW, et al. Recommendations for environmental risk assessment of gene drive applications for malaria vector control. Malaria journal. 2022;21(1):152.
Mullen GR, Durden LA. Medical and veterinary entomology: Academic Press; 2009.
Charlwood J, Vij R, Billingsley P. Dry season refugia of malaria-transmitting mosquitoes in a dry savannah zone of East Africa. The American journal of tropical medicine and hygiene. 2000;62(6):726-32.
Kweka EJ, Zhou G, Munga S, Lee M-C, Atieli HE, Nyindo M, et al. Anopheline larval habitats, seasonality, and species distribution: a prerequisite for effective targeted larval habitats control programmes. PloS one. 2012;7(12):e52084.
Olayemi IK, Ande AT. Life table analysis of Anopheles gambiae (Diptera: Culicidae) in relation to malaria transmission. Journal of Vector Borne Diseases. 2009;46(4):295-9.
Djènontin A, Bouraima A, Soares C, Egbinola S, Cottrell G. Human biting rhythm of Anopheles gambiae Giles, 1902 (Diptera: Culicidae) and sleeping behaviour of pregnant women in a lagoon area in Southern Benin. BMC Research Notes. 2021;14(1):200.
Karikari AS, Akorli J, Gbogbo F, Ndong IC, Karikari AB, Karikari AA, et al. Trophic Interactions of Anopheles Gambiae Mosquito Larvae in Aquatic Ecosystem: A Metagenomics Approach. bioRxiv. 2024:2024.11. 01.621049.
Feng X, Zhang S, Huang F, Zhang L, Feng J, Xia Z, et al. Biology, bionomics, and molecular biology of Anopheles sinensis Wiedemann 1828 (Diptera: Culicidae), the main malaria vector in China. Frontiers in Microbiology. 2017;8:1473.
Chuanzhi Q, Shouzhi S, Zhongwen W, Ruiqin Y, Meiying W, Liuping Y, et al. Life table for the experimental population of Anopheles sinensis in Zhengzhou. Henan yi ke da xue xue bao= Journal of Henan Medical University= Henan Yikedaxue Xuebao. 2000;35(5):372-5.
Omondi S, Kosgei J, Agumba S, Polo B, Yalla N, Moshi V, et al. Natural sugar feeding rates of Anopheles mosquitoes collected by different methods in western Kenya. Scientific Reports. 2022;12(1):20596.
Reynolds RA, Kwon H, Smith RC. 20-Hydroxyecdysone primes innate immune responses that limit bacterial and malarial parasite survival in Anopheles gambiae. Msphere. 2020;5(2):10.1128/msphere. 00983-19.
Mosi FA, Rutha I, Velez R, Swai JK, Mlacha YP, Marques J, et al. Effects of a blood-free mosquito diet on fitness and gonotrophic cycle parameters of laboratory reared Anopheles gambiae sensu stricto. Parasites & Vectors. 2024;17(1):289.
Touré D, Ouattara A, Kra K, Kwadjo K, Koné M, Doumbia M, et al. Impact of egg laying delay on reproduction, gorging habit, and mortality in gravid females Anopheles gambiae (Diptera Culicidae). Bulletin de la Société de pathologie exotique. 2017;110:318-25.
Diabaté A, Yaro AS, Dao A, Diallo M, Huestis DL, Lehmann T. Spatial distribution and male mating success of Anopheles gambiae swarms. BMC Evolutionary Biology. 2011;11:1-11.
Sawadogo SP, Costantini C, Pennetier C, Diabaté A, Gibson G, Dabiré RK. Differences in timing of mating swarms in sympatric populations of Anopheles coluzzii and Anopheles gambiae ss (formerly An. gambiae M and S molecular forms) in Burkina Faso, West Africa. Parasites & vectors. 2013;6:1-14.
South A, Catteruccia F. Sexual selection and the evolution of mating systems in mosquitoes. Advances in insect physiology. 2016;51:67-92.
Baldini F, Gabrieli P, Rogers DW, Catteruccia F. Function and composition of male accessory gland secretions in Anopheles gambiae: a comparison with other insect vectors of infectious diseases. Pathogens and global health. 2012;106(2):82-93.
Parham PE, Pople D, Christiansen-Jucht C, Lindsay S, Hinsley W, Michael E. Understanding the role of climatic and environmental variables on the population dynamics of Anopheles gambiae ss and the implications for vector control strategies in different settings. Malaria Journal. 2012;11:1-2.
Maïga H, Dabiré RK, Lehmann T, Tripet F, Diabaté A. Variation in energy reserves and role of body size in the mating system of Anopheles gambiae. Journal of Vector Ecology. 2012;37(2):289-97.
White BJ, Collins FH, Besansky NJ. Evolution of Anopheles gambiae in relation to humans and malaria. Annual review of ecology, evolution, and systematics. 2011;42(1):111-32.
Pates H, Curtis C. Mosquito behavior and vector control. Annu Rev Entomol. 2005;50(1):53-70.
Ngufor C, Fongnikin A, Rowland M, N’Guessan R. Indoor residual spraying with a mixture of clothianidin (a neonicotinoid insecticide) and deltamethrin provides improved control and long residual activity against pyrethroid-resistant Anopheles gambiae sl in Southern Benin. PloS one. 2017;12(12):e0189575.
Pryce J, Medley N, Choi L. Indoor residual spraying for preventing malaria in communities using insecticide‐treated nets. Cochrane Database of Systematic Reviews. 2022(1).
Owuor KO. Resting Behaviour of African Malaria Vectors in an Era of High Indoor Insecticide Use: University of Nairobi, 2022.
Hamid-Adiamoh M, Amambua-Ngwa A, Nwakanma D, D’Alessandro U, Awandare GA, Afrane YA. Insecticide resistance in indoor and outdoor-resting Anopheles gambiae in Northern Ghana. Malaria journal. 2020;19:1-12.
Osoro JK, Machani MG, Ochomo E, Wanjala C, Omukunda E, Githeko AK, et al. Insecticide-resistant Anopheles gambiae have enhanced longevity but reduced reproductive fitness and a longer first gonotrophic cycle. Scientific reports. 2022;12(1):8646.
Kiware SS, Chitnis N, Devine GJ, Moore SJ, Majambere S, Killeen GF. Biologically meaningful coverage indicators for eliminating malaria transmission. Biology Letters. 2012;8(5):874-7.
Lindblade KA, Mwandama D, Mzilahowa T, Steinhardt L, Gimnig J, Shah M, et al. A cohort study of the effectiveness of insecticide-treated bed nets to prevent malaria in an area of moderate pyrethroid resistance, Malawi. Malaria journal. 2015;14:1-15.
Mwagira-Maina S, Runo S, Wachira L, Kitur S, Nyasende S, Kemei B, et al. Genetic markers associated with insecticide resistance and resting behaviour in Anopheles gambiae mosquitoes in selected sites in Kenya. Malaria Journal. 2021;20:1-9.
Gillies MT, De Meillon B. The Anophelinae of Africa south of the Sahara (Ethiopian zoogeographical region). 1968.
Christiansen-Jucht C, Parham PE, Saddler A, Koella JC, Basáñez M-G. Temperature during larval development and adult maintenance influences the survival of Anopheles gambiae ss. Parasites & vectors. 2014;7(1):489.
Lehmann T, Diabate A. The molecular forms of Anopheles gambiae: a phenotypic perspective. Infection, Genetics and Evolution. 2008;8(5):737-46.
Agyekum TP, Arko‐Mensah J, Botwe PK, Hogarh JN, Issah I, Dwomoh D, et al. Effects of elevated temperatures on the development of immature stages of Anopheles gambiae (sl) mosquitoes. Tropical Medicine & International Health. 2022;27(4):338-46.
Devi NP, Jauhari R. Climatic variables and malaria incidence in Dehradun, Uttaranchal, India. Journal of Vector-Borne Diseases. 2006;43(1):21.
Abiodun GJ, Maharaj R, Witbooi P, Okosun KO. Modelling the influence of temperature and rainfall on the population dynamics of Anopheles arabiensis. Malaria journal. 2016;15:1-15.
Mafwele BJ, Lee JW. Relationships between the transmission of malaria in Africa and climate factors. Scientific Reports. 2022;12(1):14392.
Yamana TK, Eltahir EA. Incorporating the effects of humidity in a mechanistic model of Anopheles gambiae mosquito population dynamics in the Sahel region of Africa. Parasites & vectors. 2013;6:1-10.
Caldwell JM, LaBeaud AD, Lambin EF, Stewart-Ibarra AM, Ndenga BA, Mutuku FM, et al. Climate predicts geographic and temporal variation in mosquito-borne disease dynamics on two continents. Nature Communications. 2021;12(1):1233.
Mlacha YP, Chaki PP, Muhili A, Massue DJ, Tanner M, Majambere S, et al. Reduced human-biting preferences of the African malaria vectors Anopheles arabiensis and Anopheles gambiae in an urban context: controlled, competitive host-preference experiments in Tanzania. Malaria journal. 2020;19:1-8.
Edi CV, Djogbenou L, Jenkins AM, Regna K, Muskavitch MA, Poupardin R, et al. CYP6 P450 enzymes and ACE-1 duplication produce extreme and multiple insecticide resistance in the malaria mosquito Anopheles gambiae. PLoS Genetics. 2014;10(3):e1004236.
Stica C, Jeffries CL, Irish SR, Barry Y, Camara D, Yansane I, et al. Characterizing the molecular and metabolic mechanisms of insecticide resistance in Anopheles gambiae in Faranah, Guinea. Malaria journal. 2019;18:1-15.
Dambach P, Schleicher M, Korir P, Ouedraogo S, Dambach J, Sié A, et al. Nightly biting cycles of Anopheles species in rural northwestern Burkina Faso. Journal of Medical Entomology. 2018;55(4):1027-34.
Hauser G, Thiévent K, Koella JC. The ability of Anopheles gambiae mosquitoes to bite through a permethrin-treated net and the consequences for their fitness. Scientific reports. 2019;9(1):8141.
Paaijmans KP, Huijben S, Githeko AK, Takken W. Competitive interactions between larvae of the malaria mosquitoes Anopheles arabiensis and Anopheles gambiae under semi-field conditions in western Kenya. Acta Tropica. 2009;109(2):124-30.
Thomson RM. Studies on salt-water and fresh-water Anopheles gambiae on the East African coast. Bulletin of Entomological Research. 1951;41(3):487-502.
Tuno N, Okeka W, Minakawa N, Takagi M, Yan G. Survivorship of Anopheles gambiae sensu stricto (Diptera: Culicidae) larvae in western Kenya highland forest. Journal of Medical Entomology. 2005;42(3):270-7.
Russell TL, Beebe NW, Cooper RD, Lobo NF, Burkot TR. Successful malaria elimination strategies require interventions that target changing vector behaviours. Malaria journal. 2013;12(1):56.
Gbaguidi GJ, Topanou N, Filho WL, Ketoh GK. Potential impact of climate change on the transmission of malaria in Northern Benin, West Africa. Theoretical and Applied Climatology. 2024:1-15.
Takken W, Charlwood D, Lindsay SW. The behaviour of adult Anopheles gambiae, sub-Saharan Africa’s principal malaria vector, and its relevance to malaria control: a review. Malaria Journal. 2024;23(1):161.
Guerrero D, Vo HTM, Lon C, Bohl JA, Nhik S, Chea S, et al. Evaluation of cutaneous immune response in a controlled human in vivo model of mosquito bites. Nature Communications. 2022;13(1):7036.
Mujahid M, Rustam F, Shafique R, Montero EC, Alvarado ES, de la Torre Diez I, et al. Efficient deep learning-based approach for malaria detection using red blood cell smears. Scientific Reports. 2024;14(1):13249.
Palem G, Pal SJ. Maternal and fetal outcome of malaria in pregnancy. Int J Reprod Contracept Obstet Gynecol. 2019;8:4040-4.
Beeson JG, Reeder JC, Rogerson SJ, Brown GV. Parasite adhesion and immune evasion in placental malaria. TRENDS in Parasitology. 2001;17(7):331-7.
Amimo F. Malaria vaccination: hurdles to reach high-risk children. BMC Medicine. 2024;22(1):111.
Okunlola O, Oloja S, Ebiwonjumi A, Oyeyemi O. Vegetation index and livestock practices as predictors of malaria transmission in Nigeria. Scientific Reports. 2024;14(1):9565.
Albadrani BA, AL-Farwachi MI, Iqbal MN, Ashraf A. The Implications of Malaria in Livestock: Reservoirs, Challenges, and Future Directions. Iranian Journal of Veterinary Medicine. 2024;18(3):311-32.
Semakula HM, Song G, Zhang S, Achuu SP. Potential of household environmental resources and practices in eliminating residual malaria transmission: a case study of Tanzania, Burundi, Malawi, and Liberia. African health sciences. 2015;15(3):819-27.
Zeru MA, Shibru S, Massebo F. Exploring the impact of cattle on human exposure to malaria mosquitoes in the Arba Minch area district of southwest Ethiopia. Parasites & Vectors. 2020;13:1-8.
Tirados I, Gibson G, Young S, Torr SJ. Are herders protected by their herds? An experimental analysis of zooprophylaxis against the malaria vector Anopheles arabiensis. Malaria journal. 2011;10:1-8.
Bøgh C, Clarke SE, Walraven GE, Lindsay SW. Zooprophylaxis, artefact or reality? A paired-cohort study of the effect of passive zooprophylaxis on malaria in The Gambia. Transactions of the Royal Society of Tropical Medicine and Hygiene. 2002;96(6):593-6.
Putra RSB. Hubungan Pemeliharaan Hewan Ternak Dengan Prevalensi Kasus Malaria. Jurnal Ilmiah Kesehatan Sandi Husada. 2019;8(2):350-3.
Ruiz-Castillo P, Rist C, Rabinovich R, Chaccour C. Insecticide-treated livestock: a potential One Health approach to malaria control in Africa. Trends in parasitology. 2022;38(2):112-23.
Bognet AC, Peter EK, Kwala ZK, Sarki B, Bello IA, Fidelis S, et al. IMPACT OF MALARIA PREVALENCE ON LABOUR PRODUCTIVITY IN NIGERIA. KASU JOURNAL OF ECONOMICS AND DEVELOPMENT STUDIES. 2024;10(2 (2)):110-22.
Katu Amina H. Addressing Global Health Challenges: The Role of the Healthcare Sector in Controlling Malaria. Eurasian Experiment Journal of Biological Sciences. 2024;5(3):5-8.
Tefera DR, Sinkie SO, Daka DW. Economic burden of malaria and associated factors among rural households in Chewaka District, Western Ethiopia. ClinicoEconomics and Outcomes Research. 2020:141-52.
Thiongane M. Direct and Indirect Macroeconomic Effects of Malaria in Senegal. Journal of Economics, Management and Trade. 2022;28(5):22-35.
Koudjom E, Lokonon BO, Egbendewe AY. Climate Change, Malaria Prevalence, and Cereal Yields in Sub-Saharan Africa. The European Journal of Development Research. 2024:1-27.
Koffi AA, Camara S, Ahoua Alou LP, Oumbouke WA, Wolie RZ, Tia IZ, et al. Anopheles vector distribution and malaria transmission dynamics in Gbêkê region, central Côte d’Ivoire. Malaria Journal. 2023;22(1):192.
Wolie RZ, Koffi AA, Ahoua Alou LP, Sternberg ED, N’Nan-Alla O, Dahounto A, et al. Evaluation of the interaction between insecticide resistance-associated genes and malaria transmission in Anopheles gambiae sensu lato in central Côte d’Ivoire. Parasites & vectors. 2021;14:1-10.
Traoré A, Badolo A, Guelbeogo MW, Sanou A, Viana M, Nelli L, et al. Anopheline species composition and the 1014F-genotype in different ecological settings of Burkina Faso in relation to malaria transmission. Malaria Journal. 2019;18:1-10.
Olabimi IO, Ileke KD, Adu BW, Arotolu TE. Potential distribution of the primary malaria vector Anopheles gambiae Giles [Diptera: Culicidae] in Southwest Nigeria under current and future climatic conditions. The Journal of basic and applied Zoology. 2021;82:1-11.
Ekoko WE, Awono-Ambene P, Bigoga J, Mandeng S, Piameu M, Nvondo N, et al. Patterns of anopheline feeding/resting behaviour and Plasmodium infections in North Cameroon, 2011–2014: implications for malaria control. Parasites & vectors. 2019;12:1-12.
WHO. Global technical strategy for malaria 2016-2030: World Health Organization; 2015.
Bhatt S, Weiss D, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526(7572):207-11.
Sherrard-Smith E, Griffin JT, Winskill P, Corbel V, Pennetier C, Djénontin A, et al. Systematic review of indoor residual spray efficacy and effectiveness against Plasmodium falciparum in Africa. Nature Communications. 2018;9(1):4982.
Tusting LS, Thwing J, Sinclair D, Fillinger U, Gimnig J, Bonner KE, et al. Mosquito larval source management for controlling malaria. Cochrane database of systematic reviews. 2013(8).
Ranson H, Lissenden N. Insecticide resistance in African Anopheles mosquitoes: a worsening situation that needs urgent action to maintain malaria control. Trends in parasitology. 2016;32(3):187-96.
Kyrou K, Hammond AM, Galizi R, Kranjc N, Burt A, Beaghton AK, et al. A CRISPR–Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nature Biotechnology. 2018;36(11):1062-6.
Datoo MS, Dicko A, Tinto H, Ouédraogo J-B, Hamaluba M, Olotu A, et al. Safety and efficacy of malaria vaccine candidate R21/Matrix-M in African children: a multicentre, double-blind, randomised, phase 3 trial. The Lancet. 2024;403(10426):533-44.
Collier TC, Lee Y, Mathias DK, López Del Amo V. CRISPR-Cas9 and Cas12a target site richness reflects genomic diversity in natural populations of Anopheles gambiae and Aedes aegypti mosquitoes. BMC Genomics. 2024;25(1):700.
Dong Y, Simões ML, Marois E, Dimopoulos G. CRISPR/Cas9-mediated gene knockout of Anopheles gambiae FREP1 suppresses malaria parasite infection. PLoS pathogens. 2018;14(3):e1006898.
Raharjo M, Subagio A, Sulistiyani S. The synthesis of nanosilver and carbamate to control Anopheles in malaria endemic areas. International Journal of Public Health. 2024;13(1):294-302.
Ahouandjinou MJ, Sovi A, Sidick A, Sewadé W, Koukpo CZ, Chitou S, et al. First report of natural infection of Anopheles gambiae ss and Anopheles coluzzii by Wolbachia and Microsporidia in Benin: a cross-sectional study. Malaria Journal. 2024;23(1):72.
Lampejo T. Monoclonal antibodies for the prevention of Plasmodium falciparum malaria: a multi-target approach? Infectious Diseases. 2024;56(1):73-7.
Schmidt H, Collier TC, Hanemaaijer MJ, Houston PD, Lee Y, Lanzaro GC. Abundance of conserved CRISPR-Cas9 target sites within the highly polymorphic genomes of Anopheles and Aedes mosquitoes. Nature Communications. 2020;11(1):1425.
Hammond A, Pollegioni P, Persampieri T, North A, Minuz R, Trusso A, et al. Gene-drive suppression of mosquito populations in large cages as a bridge between lab and field. Nature Communications. 2021;12(1):4589.
Hasyim H, Ihram MA, Fakhriyatiningrum, Misnaniarti, Idris H, Liberty IA, et al. Environmental determinants and risk behaviour in the case of indigenous malaria in Muara Enim Regency, Indonesia: A case-control design. PLoS One. 2023;18(8):e0289354.
Randell HF, Dickinson KL, Shayo EH, Mboera LE, Kramer RA. Environmental management for malaria control: knowledge and practices in Mvomero, Tanzania. Ecohealth. 2010;7:507-16.
Agyemang-Badu SY, Awuah E, Oduro-Kwarteng S, Dzamesi JYW, Dom NC, Kanno GG. Environmental Management and sanitation as a malaria vector control strategy: A qualitative cross-sectional study among stakeholders, Sunyani Municipality, Ghana. Environmental health insights. 2023;17:11786302221146890.
Abebe Asale AA, Dereje Kussa DK, Melaku Girma MG, Mbogo C, Mutero C. Community-based integrated vector management for malaria control: lessons from three years' experience (2016-2018) in Botor-Tolay district, southwestern Ethiopia. 2019.
Nalinya S, Musoke D, Deane K. Malaria prevention interventions beyond long-lasting insecticidal nets and indoor residual spraying in low-and middle-income countries: a scoping review. Malaria journal. 2022;21(1):31.
Oduoye MO, Haider MU, Marsool MDM, Kareem MO, Adedayo AE, Abdulkarim AS, et al. Unlocking the potential of novel RTS, S/AS01, and R21/Matrix‐M™ malaria vaccines in African nations. Health Science Reports. 2024;7(1):e1797.
Parums DV. Current status of two adjuvanted malaria vaccines and the World Health Organization (WHO) strategy to eradicate malaria by 2030. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research. 2022;28:e939357-1.
Yu S, Wang J, Luo X, Zheng H, Wang L, Yang X, et al. Transmission-blocking strategies against malaria parasites during their mosquito stages. Frontiers in cellular and infection microbiology. 2022;12:820650.
Nema S, Nitika N. Monoclonal antibody: future of malaria control and prevention. Transactions of The Royal Society of Tropical Medicine and Hygiene. 2023;117(9):673-4.
Sherrard-Smith E, Skarp JE, Beale AD, Fornadel C, Norris LC, Moore SJ, et al. Mosquito feeding behavior and how it influences residual malaria transmission across Africa. Proceedings of the National Academy of Sciences. 2019;116(30):15086-95.
Hughes GL, Rivero A, Rasgon JL. Wolbachia can enhance Plasmodium infection in mosquitoes: implications for malaria control? PLoS pathogens. 2014;10(9):e1004182.
ดาวน์โหลด
เผยแพร่แล้ว
รูปแบบการอ้างอิง
ฉบับ
ประเภทบทความ
สัญญาอนุญาต
ลิขสิทธิ์ (c) 2025 วารสารวิทยาศาสตร์สุขภาพและสาธารณสุข วชิระภูเก็ต

อนุญาตภายใต้เงื่อนไข Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


