INFLUENCERS AFFECTING GENERATION Z’S DECISION MAKING ON RESTAURANT SELECTION
Keywords:
Influencer, Generation Z, Satisfaction, Decision-making, Social-mediaAbstract
The purpose of this research was to study the factors having influences on the decision-making process of Generation Z when selecting restaurants based on influencer recommendations. The study was conducted in the Pak Kret District of Nonthaburi Province, with a sample size of 406 participants. The questionnaire was the primary instrument to collect the research data. The statistics methodologies were descriptive statistics, such as the percentage, frequency, mean, standard deviation (S.D.), One-way ANOVA, and Chi-square test, which were utilized for data analysis.
The research results indicated that the majority of respondents were males, with a mean age of approximately 20 years and an educational attainment level of bachelor’s degree or equivalent. Their monthly income was typically in the range of 10,000-20,000 Baht. The analysis of digital media exposure behaviors revealed that Generation Z consumers predominantly utilized food delivery services, accounting for the highest proportion at 37.40%. The primary factor influencing their selection was the visual presentation of the food images. Furthermore, their experience in information seeking via online media platforms was most frequent on Facebook, Instagram, and Twitter (56.65%), followed by YouTube (34.73%). These platforms were utilized to search restaurant reviews, food aesthetics, and ambient dining environment reviews facilitated by influencers. The attitudinal analysis regarding the celebrities’ endorsements (influencer reviews) and their impact on consumer decision-making showed that the sample group highly agreed that the reputation of the influencers had the impact at the high level on the better understanding of the concepts of the restaurants, with the rating mean of 4.22, and simultaneously increased perceived credibility with the rating mean of 4.29. This data will be subsequently employed for comparative analysis with micro-influencers. The analysis of satisfaction derived from receiving review information via online media indicated that the sample expressed the highest satisfaction level with video/clip content reviews with the rating mean of 4.35. Additionally, perceived deliciousness and value for money were found to be the most critical factors influencing restaurant selection with the rating mean of 4.37. Pricing factors (4C’s) were also identified as highly influential in the decision process. The comprehensive findings demonstrate that the influencer’s reputation, platform choice, presentation strategies, e.g. video clips, visual aesthetics, content velocity and marketing mix factors (4C’s) are all statistically significant determinants of review consumption behavior and subsequent restaurant selection at the significance level of 0.05.
References
Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211. https://doi.org/10.1016/0749-5978(91)90020-T
Chueapanyawit, C. (2022). Social media influencer endorsement components that affect the influencer brand fit and attitude towards brand on social media platform: Instagram [Master’s thesis]. Mahidol University. [in Thai]
Cochran, W. G. (1977). Sampling techniques (3rd ed.). John Wiley & Sons.
Corbitt, J. (2022). The importance of influencer marketing: A guide for brands. Influencer Marketing Hub.
Djafarova, E., & Rushworth, C. (2017). Exploring the credibility of online celebrities’ Instagram profiles in influencing the purchase decisions of young female users. Computers in Human Behavior, 68, 1-7. https://doi.org/10.1016/j.chb.2016.11.009
Gutierrez, S. (2021). SurveyMonkey study: Gen Z social media and shopping habits. SurveyMonkey. https://www.surveymonkey.com/curiosity/gen-z-social-media-and-shopping-habits/
Hakuhodo. (2022). Gen Z and the digital economy: A study of consumer behavior in Thailand. Hakuhodo Institute of Life and Living ASEAN.
Jearateerawit, C., & Satawedin, P. (2022). The effectiveness of Google search ads, Facebook ads, and Google display network on personal accident insurance sales on online channels: The case study of Ocean Life Insurance. Panyapiwat Journal, 14(3), 307-322. [in Thai]
Junkisen, T. (2022, March 24). DAAT expects digital advertising to reach 27.04 billion baht in 2022, with TikTok, the rising platform, expected to see spending surge by over 654%. The Standard. https://thestandard.co/daat-expects-digital-adver-in-2565-high/ [in Thai]
Kasikorn Research Center. (2025, December 16). The restaurant and beverage business in 2025 is expected to grow by 4.6%, with a market value of 657 billion baht. https://www.kasikornresearch.com/th/analysis/k-social-media/Pages/IAO111-Restaurant-Industry-FB-16-12-2024.aspx [in Thai]
Kongrach, P. (2011). Study of teenagers’, behaviors in using social networking sites (SNSs) in Thailand: A case study of Facebook [Master’s thesis]. Thammasat University. [in Thai]
Lauterborn, B. (1990). New marketing litany; Four P’s passé; C-words take over. Advertising Age, 61(41), 26.
Misron, A., Gabor, H. A., Rao, S. N., & Ming, C. S. (2024). The impact of social media influencers on Generation Z’s consumer buying behavior: A conceptual analysis. International Journal of Academic Research in Business and Social Sciences, 14(11), 3270-3277. https://doi.org/10.6007/IJARBSS/v14-i11/23248
Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory (3nd ed.). McGraw-Hill.
Prayong, P., & Raungratanaamporn, K. (2022). Managing children identity on Facebook fanpage by influencer parents. Journal of Journalism, 15(2), 58-100. [in Thai]
Samerjai, C. (2013). Consumer behavior. SE-Education. [in Thai]
Santitam, P., & Satawedin, P. (2020). Customer journey of Gen X and Gen Y: The case study of top 3 luxury watch brands: Rolex, Omega and Patek Philippe. Romphruek Journal of the Humanities and Social Sciences, 38(3), 103-118. [in Thai]
Senawong, N. (2021). A study of behavior for using of social media of generation Z in the new normal era in Bangkok [Master’s thesis]. Siam University. [in Thai]
TTB Analytics. (2024, March 28). TTB analytics projects the restaurant business to be worth approximately 669 billion baht in 2024. https://www.ttbbank.com/th/newsroom/detail/ttba-restaurant-market-2024 [in Thai]
Vutidhammakhun, B. (2017). The social media restaurant reviews and the decision making in choosing restaurant in Bangkok [Master’s thesis]. Bangkok University. [in Thai]
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Health and Food Creation

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
“ข้าพเจ้าและผู้เขียนร่วม (ถ้ามี) ขอรับรองว่า บทความที่เสนอมานี้ยังไม่เคยได้รับการตีพิมพ์และไม่ได้อยู่ระหว่างกระบวนการพิจารณาลงตีพิมพ์ในวารสารหรือแหล่งเผยแพร่อื่นใด ข้าพเจ้าและผู้เขียนร่วมยอมรับหลักเกณฑ์การพิจารณาต้นฉบับ ทั้งยินยอมให้กองบรรณาธิการมีสิทธิ์พิจารณาและตรวจแก้ต้นฉบับได้ตามที่เห็นสมควร พร้อมนี้ขอมอบลิขสิทธิ์บทความที่ได้รับการตีพิมพ์ให้แก่สถาบันการจัดการปัญญาภิวัฒน์หากมีการฟ้องร้องเรื่องการละเมิดลิขสิทธิ์เกี่ยวกับภาพ กราฟ ข้อความส่วนใดส่วนหนึ่งและ/หรือข้อคิดเห็นที่ปรากฏในบทความข้าพเจ้าและผู้เขียนร่วมยินยอมรับผิดชอบแต่เพียงฝ่ายเดียว”