Evaluation of Safety and Pharmacological Effects of the Antipyretic Herbal Formula (G531/64) on Inhibition of SARS-CoV-2 Main Protease and Feline Coronavirus
Keywords:
G531/64, , Andrographis paniculata, SARS-CoV-2 main protease, , Thai herbal medicine, , antiviral activityAbstract
Background: Coronavirus disease 2019 (COVID-19) remains a major global health issue, prompting interest in the development of safe herbal medicines with antiviral properties. G531/64, an antipyretic herbal formulation made from eight medicinal plants, including Andrographis paniculata, was created to assess its antiviral potential and safety.
Objective: To assess the safety and pharmacological effects of G531/64, particularly its inhibitory activity against the main protease of SARS-CoV-2 and its antiviral effect in in vitro models.
Methods: This in vitro study examined the active compounds of G531/64 through LC-ESI-QTOF-MS/MS. It assessed cytotoxicity in HepG2 liver cells and evaluated inhibitory activity against SARS-CoV-2 main protease and feline coronavirus (FIPV) as an in vitro model.
Results: Amlaic acid, liquiritigenin, glycyrrhizin, and andrographidin A are important bioactive substances that have antiviral qualities. G531/64 exceeded lopinavir and ritonavir, exhibiting considerable cytotoxicity (IC50 = 60.29 µg/mL) and inhibiting SARS-CoV-2 main protease by 96.87% and 100% at doses of 10 and 100 µg/mL, respectively. It also reduced feline coronavirus infection in CRFK cells by 20%.
Conclusion: G531/64 demonstrates potential as an adjunct herbal medicine against SARS-CoV-2 infection, exhibiting protease inhibition and antiviral activity in vitro. Further in vivo studies and human safety evaluations are warranted to confirm its efficacy and safety in clinical settings.
References
Akamatsu, H., Komura, J., Asada, Y., & Niwa, Y. (1991). Mechanism of anti-inflammatory action of glycyrrhizin: Effect on neutrophil functions including reactive oxygen species generation. Planta Médica, 57(2), 119–121. https://doi.org/10.1055/s-2006-960045
Al-Kamel, H., & Grundmann, O. (2021). Glycyrrhizin as a potential treatment for the novel coronavirus (COVID-19). Mini Reviews in Medicinal Chemistry, 21(16), 2204–2208. https://doi.org/10.2174/1389557521666210210160237
Al-Sheddi, E. S., Al-Zaid, N. A., Al-Oqail, M. M., Al-Massarani, S. M., El-Gamal, A. A., & Farshori, N. N. (2019). Evaluation of cytotoxicity, cell cycle arrest, and apoptosis induced by Anethum graveolens L. essential oil in human hepatocellular carcinoma cell line. Saudi Pharmaceutical Journal, 27(7), 1053–1060. https://doi.org/10.1016/j.jsps.2019.09.001
Aliyu-Amoo, H., Isa, H. I., Njoya, E. M., & McGaw, L. J. (2021). Antiproliferative effect of extracts and fractions of the root of Terminalia avicennioides (Combretaceae) Guill. & Perr. On HepG2 and Vero cell lines. Clinical Phytoscience, 7, Article 71. https://doi.org/10.1186/s40816-021-00307-y
Ashfaq, U. A., Masoud, M. S., Nawaz, Z., & Riazuddin, S. (2011). Glycyrrhizin as an antiviral agent against the hepatitis C virus. Journal of Translational Medicine, 9, Article 112. https://doi.org/10.1186/1479-5876-9-112
Bailly, C., & Vergoten, G. (2020). Glycyrrhizin: An alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome? Pharmacology & Therapeutics, 214, 107618. https://doi.org/10.1016/j.pharmthera.2020.107618
Basar, N., Oridupa, O. A., Ritchie, K. J., Nahar, L., Osman, N. M. M., Stafford, A., ... Sarker, S. D. (2015). Comparative cytotoxicity of Glycyrrhiza glabra roots from different geographical origins against immortal human keratinocyte (HaCaT), lung adenocarcinoma (A549), and liver carcinoma (HepG2) cells. Phytotherapy Research, 29(6), 944–948. https://doi.org/10.1002/ptr.5329
Chrzanowski, J., Chrzanowska, A., & Graboń, W. (2021). Glycyrrhizin: An old weapon against a novel coronavirus. Phytotherapy Research, 35(2), 629–636. https://doi.org/10.1002/ptr.6852
Deb, A., Gupta, S., & Mazumder, P. B. (2023). Study on anti-cancer activity of fruit extract of Terminalia chebula Retz. by exosome-mediated drug delivery system in HepG2 cell line. Educational Administration: Theory and Practice, 29(4), 908–915. https://doi.org/10.53555/kuey.v29i4.4925
Dowluru, K. S., & Rao, K. S. (2020). Phylogenetic analysis and in silico screening of drug targets for ACE2 in human and spike glycoprotein in SARS-CoV-2 for control of COVID-19 [Preprint]. Research Square. https://doi.org/10.21203/rs.3.rs-23862/v1
Fu, Y., Fang, Y., Gong, S., Xue, T., Wang, P., She, L., & Huang, J. (2023). Deep learning-based network pharmacology for exploring the mechanism of licorice for the treatment of COVID-19. Scientific Reports, 13(1), 5844. https://doi.org/10.1038/s41598-023-31380-7
Gao, Y. Y., Liang, X. Y., Wang, Q., Zhang, S., Zhao, H., Wang, K., ... Gao, F. S. (2022). Mind the feline coronavirus: Comparison with SARS-CoV-2. Gene, 825, 146443. https://doi.org/10.1016/j.gene.2022.146443
Gomaa, A. A., & Abdel-Wadood, Y. A. (2021). The potential of glycyrrhizin and licorice extract in combating COVID-19 and associated conditions. Phytomedicine Plus, 1(3), 100043. https://doi.org/10.1016/j.phyplu.2021.100043
Harun, M. S., Kuan, C. O., Selvarajah, G. T., Wei, T. S., Arshad, S. S., Hair-Bejo, M., & Omar, A. R. (2013). Transcriptional profiling of feline infectious peritonitis virus infection in CRFK cells and in PBMCs from FIP-diagnosed cats. Virology Journal, 10, 329. https://doi.org/10.1186/1743-422X-10-329
Ihssen, J., Faccio, G., Yao, C., Sirec, T., & Spitz, U. (2021). Fluorogenic in vitro activity assay for the main protease (Mpro) from SARS-CoV-2 and its adaptation to the identification of inhibitors. STAR Protocols, 2(3), 100793. https://doi.org/10.1016/j.xpro.2021.100793
Kim, Y. W., Kang, H. E., Lee, M. G., Hwang, S. J., Kim, S. C., Lee, C. H., & Kim, S. G. (2009). Liquiritigenin, a flavonoid aglycone from licorice, has a choleretic effect and the ability to induce hepatic transporters and phase II enzymes. American Journal of Physiology-Gastrointestinal and Liver Physiology, 296(2), G372–G381. https://doi.org/10.1152/ajpgi.90524.2008
Kim, Y. W., Zhao, R. J., Park, S. J., Lee, J. R., Cho, I. J., Yang, C. H., ... Kim, S. C. (2008). Anti-inflammatory effects of liquiritigenin as a consequence of the inhibition of NF-κB-dependent iNOS and proinflammatory cytokines production. British Journal of Pharmacology, 154(1), 165–173. https://doi.org/10.1038/bjp.2008.79
Kuang, Y., Li, B., Fan, J., Qiao, X., & Ye, M. (2018). Antitussive and expectorant activities of licorice and its major compounds. Bioorganic & Medicinal Chemistry, 26(1), 278–284. https://doi.org/10.1016/j.bmc.2017.11.046
Lee, H.-H., Paudel, K. R., & Kim, D.-W. (2015). Terminalia chebula fructus inhibits migration and proliferation of vascular smooth muscle cells and production of inflammatory mediators in RAW 264.7. Evidence-Based Complementary and Alternative Medicine, 2015, 502182. https://doi.org/10.1155/2015/502182
Li, Y., Li, X., Wang, J., Kuang, Y., & Qi, M. (2017). Anti-hepatitis B viral activity of Phyllanthus niruri L. (Phyllanthaceae) in HepG2/C3A and SK-HEP-1 cells. Tropical Journal of Pharmaceutical Research, 16(8), 1873–1879. https://doi.org/10.4314/tjpr.v16i8.17
Lu, C.-C., Yang, S.-H., Hsia, S.-M., Wu, C.-H., & Yen, G.-C. (2016). Inhibitory effects of Phyllanthus emblica L. on hepatic steatosis and liver fibrosis in vitro. Journal of Functional Foods, 20, 20–30. https://doi.org/10.1016/j.jff.2015.10.012
Ma, J., Ding, L., Zang, X., Wei, R., Yang, Y., Zhang, W., ... Tong, X. (2024). Licoricesaponin G2 ameliorates bleomycin-induced pulmonary fibrosis via targeting the TNF-α signaling pathway and inhibiting the epithelial–mesenchymal transition. Frontiers in Pharmacology, 15, 1437231. https://doi.org/10.3389/fphar.2024.1437231
Murck, H. (2020). Symptomatic protective action of glycyrrhizin (licorice) in COVID-19 infection? Frontiers in Immunology, 11, 1239. https://doi.org/10.3389/fimmu.2020.01239
Nazir, F., John Kombe Kombe, A., Khalid, Z., Bibi, S., Zhang, H., Wu, S., & Jin, T. (2024). SARS-CoV-2 replication and drug discovery. Mol Cell Probes, 77, 101973. doi:10.1016/j.mcp.2024.101973
Paltrinieri, S., Giordano, A., Stranieri, A., & Lauzi, S. (2021). Feline infectious peritonitis (FIP) and coronavirus disease 19 (COVID-19): Are they similar? Transbound Emerg Dis, 68(4), 1786-1799. doi:10.1111/tbed.13856
Park, E.-s., Kuroda, Y., Uda, A., Kaku, Y., Okutani, A., Hotta, A., . . . Maeda, K. (2024). The comparison of pathogenicity among SARS-CoV-2 variants in domestic cats. Scientific Reports, 14(1), 21815. doi:10.1038/s41598-024-71791-8
Patra, S., Panda, P. K., Naik, Prajna P., Panigrahi, D. P., Praharaj, P. P., Bhol, C. S., . . . Bhutia, S. K. (2020). Terminalia bellirica extract induces anticancer activity through modulation of apoptosis and autophagy in oral squamous cell carcinoma. Food and Chemical Toxicology, 136, 111073. doi:https://doi.org/10.1016/j.fct.2019.111073
Pawar, R. S., & Bhutani, K. K. (2005). Effect of oleanane triterpenoids from Terminalia arjuna — a cardioprotective drug on the process of respiratory oxyburst. Phytomedicine, 12(5), 391-393. doi:https://doi.org/10.1016/j.phymed.2003.11.007
Peiris, D. S. H. S., Fernando, D. T. K., Senadeera, S. P. N. N., & Ranaweera, C. B. (2023). Phytochemical Screening for Medicinal Plants: Guide for Extraction Methods. Asian Plant Research Journal, 11(4), 13-34. doi:10.9734/aprj/2023/v11i4216
Pinmai, K., Chunlaratthanabhorn, S., Ngamkitidechakul, C., Soonthornchareon, N., & Hahnvajanawong, C. J. W. J. O. g. W. (2008). Synergistic growth inhibitory effects of Phyllanthus emblica and Terminalia bellerica extracts with conventional cytotoxic agents: doxorubicin and cisplatin against human hepatocellular carcinoma and lung cancer cells. 14(10), 1491.
Popovich, D. G., Yeo, S. Y., Zhang, W. J. E. B. C., & Medicine, A. (2011). Ginseng (Panax quinquefolius) and Licorice (Glycyrrhiza uralensis) Root Extract Combinations Increase Hepatocarcinoma Cell (Hep‐G2) Viability. 2011(1), 408273.
Qin, H., Song, Z., Zhao, C., Yang, J., Xia, F., Wang, L., Zheng, W. (2022). Liquiritigenin Inhibits Lipid Accumulation in 3T3-L1 Cells via mTOR-Mediated Regulation of the Autophagy Mechanism. 14(6), 1287.
Qin, Y., Zhou, M., Hao, Y., Huang, X., Tong, D., Huang, L., . . . Zhu, T. (2024). Amplified positive effects on air quality, health, and renewable energy under China’s carbon-neutral target. Nature Geoscience, 17(5), 411-418. doi:10.1038/s41561-024-01425-1
Ramalingam, M., Kim, H., Lee, Y., & Lee, Y.-I. (2018). Phytochemical and Pharmacological Role of Liquiritigenin and Isoliquiritigenin From Radix Glycyrrhizae in Human Health and Disease Models. Volume 10 - 2018. doi:10.3389/fnagi.2018.00348
Sahragard, A., Alavi, Z., Abolhassanzadeh, Z., Moein, M., Mohammadi-Bardbori, A., Omidi, M., & Zarshenas, M. M. J. B. R. I. (2021). Assessment of the cytotoxic activity of Triphala: A semisolid traditional formulation on HepG2 cancer cell line. 2021(1), 6689568.
Seetaha, S., Khamplong, P., Wanaragthai, P., Aiebchun, T., Ratanabunyong, S., Krobthong, S., . . . Choowongkomon, K. (2022). KERRA, Mixed Medicinal Plant Extracts, Inhibits SARS-CoV-2 Targets Enzymes and Feline Coronavirus. 2(5), 621-632.
Shafa Shavira, S. H., Fatmaria Fatmaria. (2023). The in-silico potential of Andrographis paniculata phytocompounds as antiviral for the treatment of COVID-19: A systematic review %J Journal of Applied Pharmaceutical Science (Vol. Volume: 13): Issue: 8.
Suriyo, T., Chotirat, S., Rangkadilok, N., Pholphana, N., & Satayavivad, J. (2021). Interactive effects of Andrographis paniculata extracts and cancer chemotherapeutic 5-Fluorouracil on cytochrome P450s expression in human hepatocellular carcinoma HepG2 cells. Journal of Herbal Medicine, 26, 100421. doi:https://doi.org/10.1016/j.hermed.2021.100421
Tungpradit, R., Sinchaikul, S., Phutrakul, S., Wongkham, W., & Chen, S.-T. Anti-cancer compound screening and isolation: Coscinium fenestratum, Tinospora crispa, and Tinospora cordifolia.
Wang, A., Lu, Y., Shi, P., & Zhang, H. (2017). Hydroxyl and hydroperoxyl radicals scavenging by isoliquiritigenin and liquiritigenin: a quantum chemical study. Structural Chemistry, 28(4), 1181-1186. doi:10.1007/s11224-017-0924-0
Wangkiri, N., Sarnsri, T., Thongkanjana, T., Sae-Tan, S. J. A., & Resources, N. (2021). Antioxidant potentials and inhibitory activities against α-amylase and α-glucosidase, and glucose uptake activity in insulin-resistant HepG2 cells of some medicinal plants. 55(1), 98-104.
Zhu, J., Deng, Y.-Q., Wang, X., Li, X.-F., Zhang, N.-N., Liu, Z., . . . Xie, Z. (2020). An artificial intelligence system reveals that liquiritin inhibits SARS-CoV-2 by mimicking type I interferon. bioRxiv. doi:10.1101/2020.05.02.074021
Zwicklbauer, K., Bergmann, M., Alberer, M., von Both, U., & Hartmann, K. (2025). [Feline infectious peritonitis - a current overview]. Tierärztl. Prax. Ausg. K Kleintiere Heimtiere, 53(2), 96-102. doi:10.1055/a-2524-3760
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 VCHPK Health and Public Health Sciences Journal

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


